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ABSTRACT 
Objectives:  The overall objective of this program was to develop a set of models and methods 
for prioritizing management of threatened, endangered, and at-risk species.  Specifically, we 
sought to develop tools for evaluating effects of management on population viability using 
varying levels of data:  1) life history data when little is known about a species, 2) count data 
when only estimates of abundance through time are available, and 3) metapopulation models 
when we have a lot of demographic data about multiple populations. 

Technical Approach:    We first constructed a framework based on structured population models 
that can be used to evaluate possible effects of management actions on population growth rates 
for data-poor species.  We demonstrated this approach with the arroyo toad.  We then used time 
series of count data to fit stochastic models of population growth and assess population trend or 
viability, and applied the approach to evaluate extinction risk for greater sage-grouse at Yakima 
Training Center.  For species with detailed information about vital rates, spatial structure, and 
metapopulation characteristics, we developed methods for conducting global sensitivity analyses 
of viability models for multiple populations.  We demonstrated these methods using a pilot 
conservation incentive program for golden-cheeked warblers at Fort Hood.  Finally, we 
combined time-series abundance estimates for multiple populations to evaluate probability of 
persistence for Sonoran pronghorn at Barry M. Goldwater Range.  

Results:  We demonstrated that arroyo toad population growth rates are highly dependent on 
survival of toads during their terrestrial life stages.  We also illustrated the strong effect of 
parameter uncertainty on population persistence estimates.  We next applied a set of population 
growth models to the greater sage-grouse population at Yakima Training Center and showed that 
the population growth rate is negatively influenced by drought and increasing area of grassland 
habitat.  Overall, the probability of this population dropping below an extinction threshold of 50 
lekking males was high under the best growth models.  In demonstrating our approach for 
applying sensitivity analyses to metapopulation models for golden-cheeked warblers, we found 
that uncertainty in model structure and parameter estimates made it impossible to develop 
general guidelines for valuing habitat patches, but we identified parameters that need to be 
targeted in future research.  Using time-series estimates of abundance for multiple populations, 
we estimated the probability of persistence for Sonoran pronghorn under three management 
scenarios and showed a clear and substantial benefit to supplementing the wild population with 
individuals from the captive population at Cabeza Prieta National Wildlife Refuge. 

Benefits:  The demonstrations of our approaches were designed to address real management 
issues and have clear and immediate use to the managers of focal installations.  The general tools 
we’ve developed can be used to address management questions for many species of DoD 
concern and can be used to improve biological assessments, NEPA analyses, recovery planning, 
and endangered species management plans.  Moreover, these tools can be used to provide 
direction as to how future research should proceed to focus on the factors that are most important 
to population viability. 



   

 
INTRODUCTION 

 
The primary mission of most federal agencies does not include protection of imperiled 

species.  The mission of the Department of Defense (DoD), for example, is to provide military 
forces necessary to protect the security of the United States.  Yet a variety of laws and 
regulations demand that planning and implementation of actions to support military readiness 
take into consideration their effects on species and habitats of concern.  Natural resource 
managers are thus continually challenged to evaluate the effects of a wide range of activities on 
species of concern in a world of limited time and financial resources.   Compounding the 
challenge are the frequent shortages of data needed and the complexity of most quantitative 
approaches for in-depth effects analyses.  Of necessity, then, these evaluations are typically 
qualitative and based largely on expert opinion.   The manager’s job would be greatly facilitated 
by easy to use, scientifically-based tools to assess effects of training and conservation programs 
on the viability of imperiled species. 

In this report, we describe an approach that links quantitative population ecology with 
biological data and management alternatives.  A key element of our approach is a set of tools for 
assessing effects of training and conservation that, for a given species, are appropriate to the 
amount of biological data available.  Each tool is based in population modeling and provides a 
quantitative platform for evaluating population viability under different management scenarios.  
As the level of available data for a species increases, more complex and powerful analyses are 
possible.  However, each tool is designed to be used by biologists without extensive training in 
quantitative ecology or modeling. 

A useful approach to determine how management actions will influence the viability of a 
species is to model population dynamics and quantify the effects that various actions have on 
extinction risk.  Collectively, these quantitative approaches for evaluating extinction risk are 
captured in the set of population viability analysis (PVA) methods.  PVA can be defined as the 
application of data and models to predict a series of likelihoods that a population will persist for 
specified times into the future and includes three inter-related components: persistence 
(extinction or quasi-extinction), persistence time, and likelihood of persistence (Mills et al. 
2005).  Considering these components, PVA must be conducted as an examination of 
alternatives (i.e., management actions), with a range of data and products, instead of performing 
a single PVA for a species with “X” data for “Y” probability of persistence over “Z” years.  For 
listed species, PVA can be used to compare probabilities of persistence across a range of 
management alternatives and metapopulation configurations (e.g., number and sizes of 
populations), leading to practical, effective management programs to support recovery 
(Possingham et al. 2002). 

Many key aspects of PVA have a strong biological basis, but the selection of goals 
requires the addition of a social component.  Issues such as “For how long do we want to 
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evaluate persistence?” and “How secure should persistence be?” require social, cultural, 
economic, and political considerations (Scott et al. 1995, Shaffer 1987, Ludwig and Walters 
2002) and would benefit from incorporating a mechanism for acquiring information from a large 
array of sources.  Scott et al. (1995) proposed that when PVA is used in endangered species 
recovery planning it should incorporate short-term projections that are evaluated over time 
against a long-term goal (see also Goodman 2002, Reed et al. 2006).  The long-term viability 
assessment should include goals that are biologically based.  The short-term projections should 
explicitly incorporate political/legal/social constraints; monitoring and the iterative application of 
short-term PVAs can be used to evaluate how well long-term goals are being achieved.  Thus, 
public review (and political tradeoffs) can be incorporated in choosing short-term management 
strategies, but ultimate success is judged against the yardstick of the long-term, biologically 
based goal and legally defensible recovery objectives. 

One of the most powerful approaches to PVA is the construction of demographically 
explicit models of population growth.  This class of PVA models uses estimates of vital rates 
(i.e., age-specific survival and fecundity) and allows for consideration of environmental and 
demographic stochasticity, density dependence, and can be expanded to incorporate 
metapopulation dynamics.  Although these models require difficult-to-obtain information, they 
have the advantage of assembling biological information in a way that suggests specific actions 
that might reduce the chance of extinction (Beissinger and Westphal 1998).  There are a variety 
of different model structures for conducting a demographically-based PVA with each carrying its 
own set of assumptions and data requirements (Beissinger and Westphal 1998).  At one end of 
the spectrum are simple deterministic matrix models applied to a single population (DSP).   
These models require the least amount of empirical data for specifying model parameters and 
although they are not technically a “PVA” model since no extinction risk is calculated, they are 
often used to inform conservation decisions of imperiled species.  A key simplifying assumption 
of DSP models is that demographic rates remain constant or nearly so through time.  When there 
is significant temporal variation in these rates, population viability can be greatly affected by not 
only mean demographic rates but also their variability.  To deal with these effects, stochastic 
models are often used.  Stochastic single-population models (SSP) allow matrix parameters to 
vary as a result of environmental and demographic stochasticity.   Both DSP and SSP models 
treat all individuals as belonging to the same population with equal demographic rates for DSP 
models or equal distributions of demographic rates for SSP models.  However, in many 
situations it is more realistic to assign individuals to subpopulations that are distributed across 
the landscape and are connected by dispersal or correlated demographics.  Each subpopulation is 
allowed to have independent, within the correlation structure, demographics as well as rates of 
immigration/emigration.  To model these situations, stochastic models that incorporate 
relationships among multiple, spatially segregated sub-populations have been developed 
(stochastic metapopulation models; SMP). 

In an ideal world, data would be easy and inexpensive to collect and we would have 
virtually unlimited information about a species, including population size and trend, vital rates, 
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movements, and habitat relationships, for single as well as multiple populations.  We would be 
able to use these data in formal models to predict the species’ or population’s viability and 
identify factors that are most likely to affect viability.   In the real world our knowledge 
approaches this ideal for only a handful of species.  Furthermore, analytic approaches for 
evaluating population status and viability are often computationally intensive and require some 
degree of proficiency in statistical modeling.  Newer modeling techniques tend not to be 
represented in currently available, pre-written software packages.  The result is a very reasonable 
reliance on qualitative predictions of management effects on species of concern. 

We portray three different levels of data availability typically encountered by biologists.  
First, and all too often, very little is known about a species beyond basic life history information.  
This is particularly true for recently listed species or those that are cryptic and difficult to 
monitor.  In this case, detailed analyses of population trends, demographic rates, or 
metapopulation dynamics are not possible.   Alternative, less data-intensive modeling approaches 
are needed to forecast management effects.  In the second level there may be few demographic 
data available, but abundance estimates have been collected over a period of years.  These time 
series of count data are the product of long-term monitoring programs and are the most common 
type of existing information for wild populations.   Assessing population trend or viability from 
these data requires fitting appropriate population growth models to the data, and newer methods 
for doing this are not accessible to many biologists.  Finally, there is the optimal situation in 
which demographic studies have provided detailed information about species vital rates, spatial 
structure, and metapopulation characteristics.  Metapopulation viability analyses are then 
possible, and newer approaches to sensitivity analysis can tell us which factors most contribute 
to viability of single or multiple populations.  Each of our tools addresses one of these types of 
data.   
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PROJECT OBJECTIVE 
The overall objective of this program was to develop tools to estimate extinction risk and 

evaluate management actions for recovery of listed species on DoD-managed lands.  The tools 
were designed to be scientifically based, appropriate for the amount of data available, and easy to 
use by managers.  We provided the theoretical foundation and analytical tools necessary to 
evaluate the influence of specific management actions on extinction risk.  Our approach allowed 
this evaluation to be made in a rigorous way under a range of levels of biological information, 
from almost total lack of detailed demographic data where rules-of-thumb must suffice to the 
ideal where detailed, spatially-explicit estimates of demographic parameters and their variability 
are available for every population constituting the metapopulation of the species.  We developed 
three tools, each of which was designed to address one of three levels of available data:  first, 
when very little is known about a species, we used life history data to prioritize immediate 
recovery actions.  Second, we used estimates of population abundance over time, the most 
commonly available type of data, to monitor and project population viability.  Third, when there 
is an abundance of demographic data available for multiple populations, we used metapopulation 
models to estimate population viability.  Together, these approaches allow managers to use the 
best possible method for assessing the effects of management on population viability and 
recovery, precluding the need to force different types of data into unsuitable PVA models.    

As with any form of population modeling, a constant challenge in estimating population 
viability is dealing with uncertainty in model predictions.  The fourth component of our project 
involved addressing the issue of uncertainty in predictions of population viability.  We developed 
analytical approaches to quantify overall uncertainty and partition it into contributions from 
different types of uncertainty including parameter estimation error, error due to model structure, 
and the links between environmental conditions, human perturbations (such as management or 
training actions) and parameters of population growth models.   

Throughout the project, we demonstrated our approaches using existing, important 
management issues for focal species on specific DoD installations. 
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PART 1:  GUIDELINES FOR PRIORITIZING MANAGEMENT OF 
POORLY-STUDIED SPECIES 

 
Background 

When a species is under multiple threats, effectively prioritizing management action to 
achieve recovery is dependent on understanding the role of each threat in depressing overall 
population viability, and the degree to which those threats can be alleviated through 
management.  Threats can vary in their impact on population viability either because the 
magnitude of the threats themselves varies, or because they impact different life stages of a 
species, which in turn contribute differently to population growth.  For this reason, understanding 
how each aspect of a species’ life cycle affects its overall population growth is critical to 
prioritizing management actions.  This is particularly true for species that have distinct life 
stages, often requiring different resources or habitats, leading to a disparate set of threats during 
each stage of its life cycle. 

Demographically explicit population models are extremely useful for identifying the 
effectiveness of different management options to increase population viability (Morris and Doak 
2000, Mills 2007).  These models typically use projection matrices, which track changes in the 
numbers of individuals in different stages (e.g., age or size categories) in a population (Caswell 
2001).  The stage-specific nature of these models allows researchers to determine whether an 
increase in any of the species’ vital rates, detected by monitoring, actually suffices to reverse 
population decline.  Using these models, researchers can identify factors that most threaten a 
population, and thus identify particular life stages or demographic processes that should be the 
primary targets for management (Crouse et al. 1987, Beissinger and Westphal 1998). 

The primary drawback of this powerful class of models is their data requirements (Morris 
et al. 2002).  Parameterizing a formal, structured population model is only possible for species 
for which an abundance of data exists, typically sample means and variances of all demographic 
vital rates for a population (i.e. stage-specific fecundity and mortality rates).  Additional data are 
required if we want to compare the utility of different management actions in species recovery.  
For this we also require data on the effect of management in altering each of these vital rates.  
For the vast majority of threatened and endangered species, these demographic data do not exist 
(Heppell et al. 2000).  Given that such data are often costly, time-consuming and difficult to 
obtain, management decisions often need to be made before they can be collected (Pullin et al 
2004, Bottrill et al. 2009). 

Consequently, though we have very powerful tools for conservation, we often lack the 
data, or the time and resources to collect the data required to link them to actual on-the-ground 
management.  We present here a simple framework based on the principles of structured 
population models to aid managers in allocating research and data collection efforts, and in 
clarifying management priorities for such data-poor species.  For this approach, we use species-
specific life history information to determine the structure of the population projection matrix 
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that describes the relationship between a species’ life cycle and its population growth rate.  We 
then use these life history-specific models to identify which combinations of vital rate values for 
a particular life history result in positive or negative population growth.  In these models, 
parameter variability can represent environmental stochasticity (process variance), observation 
error, or a combination of both.  As such, by assessing the impacts of increasing levels of 
variation in any parameter on model output, we can infer which parameters require the most (or 
least) precision in data collection.  

To address the ability of particular management actions to alter species vital rates, we 
performed a comprehensive review of existing data from previously published management 
studies, and analyzed these data using meta-analytic techniques.  Meta-analysis is a powerful 
method for synthesizing the results of multiple independent studies to determine the overall 
effect of some intervention (Gurevitch and Hedges 1993).  From each study, an effect size is 
calculated that quantifies the difference in mean response between treatment and control, 
standardized by some measure of the size and precision of that study (usually a function of the 
sample size and standard deviation).  As a result, one can calculate the overall magnitude and 
direction of a treatment effect across studies, as well as the contribution of various covariates to 
between-study variation in effect size.   

Relatively few published studies report quantitative estimates of the impact of 
management on species vital rates for the taxonomic groups most of conservation interest on 
DoD installations.  Two notable exceptions are the extensive literature describing the impact of 
various management regimes on bird nest success, and the effects of management measures 
aimed at reducing competition pressure on plants.  We therefore focused our efforts on these 
data.  

First, we analyzed the ability of common management interventions (livestock exclusion, 
prescribed burning, predator removal programs and cowbird (Molothrus spp.) removal programs) 
to increase avian nest success.  Nest predation is the leading cause of reproductive failure in 
birds (Martin 1995), and for bird species confined to ever shrinking habitat fragments, high rates 
of nest predation and brood parasitism present immediate threats to long-term persistence (Heske 
et al. 2001; Ortega et al. 2005).  Yet, ultimately, the leading cause of bird declines is the 
degradation and fragmentation of suitable habitat (Terborg 1989; BirdLife International 2008).  
Changes in the structure and composition of plant communities that accompany habitat 
degradation can negatively impact birds by affecting the availability of food resources and 
suitability of nest sites, both of which may have direct negative impacts on the reproductive 
success of birds, as well as increasing exposure to predators and brood parasites (Wiens 1973; 
Johnson and Temple 1990; Saab et al. 1995).  Re-establishing historic disturbance regimes 
through prescribed burning and the manipulation of grazing pressure have increasingly been 
recognized as an important method for restoring habitat quality (Askins et al. 2000; Brawn et al. 
2001).  In our analysis of bird management studies, we compared how habitat restoration 
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measures and parasite and predator control measures affect bird nest success, and determined 
what variables and conditions lend to the success or failure of these programs. 

Our meta-analysis of plant data had two goals: 1) to determine the ability of management 
actions to increase plant vital rates; and 2) to determine the impact of environmental variability 
on the effectiveness of this management.  Many sensitive plant species are experiencing 
precipitous population declines due to competitive displacement, and in order to maintain 
populations of these species, conservation practitioners must manage habitat in a way that 
minimizes competition (Carlsen et al. 2000; Kaye et al. 2001).  Typically, this involves manually 
removing competitors (e.g. the surrounding vegetation) through weeding and herbicides or by re-
introducing disturbance regimes through mowing, grazing and burning.  We analyzed the 
outcome of such competitor removal treatments on three plant vital rates: seedling establishment 
rate, seedling survival and reproductive output (e.g. the number of flowers, seeds or fruits 
produced per plant). 

The success or failure of any particular management action to increase species’ viability 
can depend on the specific local environmental conditions in which those actions are undertaken.  
For example, climate has been shown to be a major driver of plant population dynamics (Hobbs 
and Mooney, 1991, Knapp and Smith, 2001), and any efforts to increase plant population growth 
rates through management could be helped or hindered by local climate conditions (e.g. rainfall 
and temperature).  While competitor removal programs are carried out with the intent to increase 
the survival growth and reproduction of target species, some experimental evidence has 
suggested that the reduction and removal of surrounding vegetation may actually have little or 
even negative effects on these rates in target species in drought years due to increasing water 
stress (Ryser 1993; Fischer and Matthies 1998; Eckstein 2005).   

Teasing apart the effect of climate variables on the ability of management to increase 
species vital rates normally requires multiple years of data and thus, the type of long-term studies 
that managers rarely have the time or resources to undertake.  A potential alternative to such 
long-term studies is to compare the effects of management on species’ vital rates across 
individual studies in the framework of a meta-analysis, with the local climate variables of each 
study as a covariate to explain variability in management effects across studies.  We used this 
approach to test and compare the ability of climate variables (temperature and precipitation) and 
ecologically relevant grouping variables (e.g. seed mass, plant longevity, presence of seed bank, 
conservation status) to mediate the outcome of competitor removal treatments on three plant vital 
rates: seedling establishment rate, seedling survival and reproductive output.   

 

Methods 
Developing life history based demographic models 

To determine the relationship between a species’ vital rates and its population growth 
rate, we first determined the timing and duration of each life stage from any available 
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information on the species’ basic life cycle.  For example, Figure 1 outlines the life cycle of the 
arroyo toad (Bufo californicus), a federally endangered species located on several military 
installations in southern California.  From the arroyo toad’s basic life history information, we can 
determine which vital rates are necessary to parameterize each transition between every stage of 
this species’ life (Figure 2).  With these parameters defined, we can then construct an age-based 
matrix model that explicitly tracks how the toad’s population growth rate varies as a function its 
vital rates (Figure 3). 

 

 
Figure 1:  Basic life history information for the arroyo toad (Bufo californicus). 

 

 

 
 

Figure 2:  A life cycle diagram for the arroyo toad, showing the combinations of vital rates that 
make up transitions between age classes.  Adults are assumed to senesce at six years. 
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Figure 3:  An age-based projection matrix for the arroyo toad.  The model assumed a census of 
female adult and juvenile toads just prior to breeding (assumed to be synchronous across the 
population).   

 

To determine the combination of parameter values that result in either positive or 
negative population growth rate for the arroyo toad, we developed a simple simulation which 
incrementally increased each parameter between some designated minimum and maximum 
values (Table 1).  Standard matrix analysis techniques (Caswell 2001) were used to calculate the 
deterministic population growth rate (λ0) for each possible parameter combination.  To quantify 
the effect of vital rate variability on predictions generated by our general life history models, we 
used an analytical approach derived from Tuljapurkar’s small noise approximation (Tuljapurkar 
1982; Haridas and Tuljapurkar 2005).  This approach estimates the stochastic population growth 
rate (λS) as: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

0

2

0S 2
1

λ
τλλ loglog          (1) 

in which the long-term stochastic population growth rate (λS) is equal to the deterministic 
population growth rate (λ0), reduced by the effects of vital rate variation: 

∑= ji jijiji
2 SS, ,ρσστ .         (2) 

where ρi,j is the correlation between vital rates i and j, and Si and σi are the sensitivity value and 
standard deviation, respectively, of vital rate i.   

For estimations of stochastic lambda, each vital rate is represented by some distribution 
of values, so in addition to increasing each vital rate mean (μi) stepwise from minimum to 
maximum values, we also specified the amount of variation in each vital rate by altering its 
standard deviation (σi).  We altered standard deviations to be either 75% or 25% of the maximum 
possible value that the appropriate vital rate distribution can take.  For example, we represented 
all survival probabilities as beta distributions (bounded by 0 and 1), while fecundity terms were 
represented by stretched beta distributions (bounded by some determined biological minimum 
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(xmin) and maximum (xmax) value).  The maximum standard deviation allowed for any mean beta 
value (μi) is: 

( )iii 1 μμσ −=max           (3) 

 

and the maximum standard deviation allowed for any mean stretched beta mean is: 

( )( )( minmaxmax xx1 iii −−= μμσ ).        (4) 

 

Varying multiple parameters simultaneously results in λ values varying in a multi-
dimensional space.  To present these results in an easy to interpret format, we selected two 
parameters to vary continuously, while all others parameters vary between some selected “low” 
or “high” values (Table 1).   

We determined which parameter values to use and vary in our models depending on the 
vital rates most of interest to managers.  The arroyo toad has very specific habitat requirements 
for successful reproduction, and thus a major concern for the maintenance of toad populations 
has been the effect of alterations to the hydrology of streams used as breeding habitats and the 
effect these changes have on the probability of toads successfully completing breeding and egg 
survival (USFWS 1999).  Predation of arroyo toads by bullfrogs is another major management 
concern (affecting all stages, but perhaps larval and metamorph stages are most vulnerable).  
Other threats listed in its recovery plan are: contamination of breeding streams, degradation of 
terrestrial habitats and crushing of adults by vehicles.  Because management concern focuses 
mostly on the aquatic stages of this toad, and relatively little is known about its terrestrial stages 
(i.e. the adult and juvenile stages) we examine how the population growth of this species varies 
as a function of survival of the terrestrial stages (adults and juveniles), breeding success, and 
survival of the aquatic stages.  
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Table 1: Vital rate values used to parameterize the age-structured model for the arroyo toad. 

Vital rate description Symbol Range used Values in 
literature Reference 

Egg survival 
 SE 0.5, 0.75 0.55 – 0.84 Blaustein et al. 1994 

Tadpole survival SL 0.05, 0.2, 0.3 0 – 0.25 FWS Final Recovery 
Plan (1999) 

Metamorph survival (from 
metamorphosis to 1 year old) 

 
SM 0.1, 0.3 0.2 

0.08 
Clark 1977 

Biek et al. 2002 

annual survival of juvenile toad 
 SJ 0.5(SA) 0.26 Biek et al. 2002 

 

annual survival of adult toad 
 SA 0.05 – 1.0 0.78 Biek et al. 2002 

 

Breeding success (mean 
proportion of females laying 

eggs each year) 
φ  0.05 – 1.0 No data  

Clutch size C mean = 4,700 
(2,000–10,000) 

mean = 4,700 
(2,000–10,000) 

FWS Final Recovery 
Plan (1999) 

Age at reproductive maturity  3 years old 2-3 years old FWS Final Recovery 
Plan (1999) 

Maximum lifespan 
  6 years 

No data 
(mean lifespan 

5 yrs) 

FWS Final Recovery 
Plan (1999) 

Sex ratio 
  1:1   

 

 

This approach described above is best suited for species for which few data are available 
(e.g. species should be relatively unstudied with regard to demographic information), but that 
have relatively well-understood life histories.  It is not relevant or particularly useful for species 
which are well-studied, or for which strong ground-truthed management options are already in 
place.  Because we require some information about the basic life history attributes of a species in 
order to determine how life cycle determines growth rate, we cannot use this approach for 
species for which basic life history is unknown.  Many of the species on DoD installations 
meeting these criteria share very similar life-history characteristics (e.g. annual plants).  Thus, 
we developed a set of general matrix models and life cycle diagrams for eight distinct life-history 
types encompassing the majority of these species.  These are: annual, perennial and biennial 
plants, short and long-lived birds, amphibians, small mammals and a turtle.  We compiled data 
on threats and potential management interventions for these groups, and generated model results 
relating to these threats and actions.   
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Meta-analyses of management impacts 
We conducted our literature searches for studies quantifying the impact of management 

actions on both bird nest success and plant vital rates using the Web of Science, Agricola, 
WorldCat and Dissertation Proquest International databases.  We supplemented our search from 
the literature cited sections of retrieved articles and from reviews.  We excluded any studies in 
which multiple management actions were applied together (e.g. managed plots both burned and 
grazed), studies that compared effects of different management actions without reporting data for 
unmanaged populations (e.g. burned plots compared to grazed plots), or studies of bird nest 
success that used artificial nests to estimate nest survival rates.   

Many of the studies we retrieved reported data on the effect of a management action for 
multiple species.  For these studies, we considered the results for each species to be independent 
and calculated effect sizes for each species separately.  We considered this appropriate because 
our primary interest is the response of individual species to management, and how these 
responses are mediated by each species ecological associations and biological characteristics 
(Borenstein et al. 2009). 

Covariate data and statistical analysis of management impacts on bird nest success 
 For all studies of management impacts on bird nest success, we collected data on the 
following covariates to explain between species differences in management effectiveness: 1) 
study specific variables, such as habitat type and the area of treatment (managed) plots; 2) 
species specific variables such as the conservation status and the foraging and nesting 
preferences of target species; and 3) environmental covariates thought to be important within 
each individual management category, such as measures of grazing intensity, time since fire, and 
the effectiveness of predator or parasite removals.    

We categorized the habitat in which studies were carried out into three main types: 
woodlands, grasslands and shrub-dominated habitats (“shrublands”).  Riparian areas were 
classified as woodland, and two studies in wetland areas were categorized as grasslands.  We 
specified birds by their nest-layer and foraging guilds, based on species accounts in Birds of 
North American Online.  Nest-layer guilds included ground, shrub-layer and canopy-layer 
nesting.  Foraging guilds included: omnivore, ground insectivore, and above-ground foraging 
insectivore.  The above-ground foraging category combines aerial, foliage-gleaning and bark-
gleaning insectivore guilds because of the sparse representation of each these guilds within 
management categories.  We categorized hatchlings as either altricial or precocial. 

We specified conservation status of species as either “of conservation concern” or “not of 
concern.”  Bird populations were classified as “of conservation concern” if they were:  1) listed 
as vulnerable, threatened, rare or endangered by the International Union for Conservation of 
Nature (IUCN) or the U.S. Fish and Wildlife Service (USFWS); 2) identified by the study 
authors as “declining;” or 3) experiencing significant regional declines (defined as declining 
trends with p-values < 0.05 from the USFWS Breeding Bird survey trend estimator; Sauer et al. 
2008).  
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We used Hedge’s d as our effect size measure, which is the difference in mean nest 
success between managed plots ( TX ) and unmanaged plots ( CX ) standardized by an estimate of 
the study’s precision and corrected for bias arising from small sample sizes (Hedges and Olkin 
1985).  

Hedge’s d = J
S

XX

p

CT−         (5) 

 

where Sp is the pooled standard deviation  
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and J is a correction factor for small sample sizes 
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with nT and nC representing, respectively, sample sizes for the managed and unmanaged 
populations, and sT and sC  the standard deviations of managed and unmanaged populations.  The 
variance of Hedge’s d is: 
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 Hedge’s d can be interpreted as the difference between mean nest success in managed 
and unmanaged plots measured in units of standard deviations.  Thus, an effect size of 0.8 
indicates that, on average, nest success is 0.8 standard deviations greater in managed plots than 
unmanaged plots.  Effect size values less than zero indicate decreased nest success with 
management.    

We first tested for differences in effect size means from the full set of bird species in each 
management category (livestock exclusion, prescribed burns, predator removal programs and 
cowbird removal programs), then tested how only those species considered to be of conservation 
concern differed in their responses to these interventions.  We conducted each analysis as a 
random-effects weighted analysis of variance (ANOVA).  We considered a random-effects 
model to be most appropriate for our analyses because we assumed that there is real, unexplained 
variation in effect sizes between studies that cannot be accounted for by our chosen grouping 
variables (Borenstein et al. 2009).  In each analysis, study effect sizes (Hedge’s d; eqn. 5) were 
weighted by the inverse of their variance (eqn. 8) (Hedges and Olkin 1985).  Analyses were 
carried out in Metawin 2.1 (Rosenberg et al. 2000). 
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We tested the ability of our selected covariates to explain heterogeneity in effect size 
between species within each management category using a random effects multiple regression 
approach.  This approach partitions the total variation across species effect sizes into estimates of 
within-species variation and between-species variation, and then estimates how well covariates 
explain the latter (Higgens et al. 2003).  For each management category, we started with a model 
that included all covariates for which we had complete coverage across studies (see Appendix A, 
Supporting Data, for data on covariates), then simplified these models using backwards stepwise 
selection to eliminate covariates with non-significant effects.  We then separately tested the 
effect of covariates that were available only for a subset of studies, again simplifying models 
through a backwards stepwise process.  All analyses were carried out using the module Metareg 
in STATA (version 11; STATA Corporation, College Station, Texas) (Sharp 1998). 

Covariate data and statistical analysis of management impacts on plant demographic rates 
For our analysis of the impact of competitor removal treatments on plant demographic 

rates, we included the following covariates: habitat type, characteristics of the focal species (life 
form, longevity, seed mass, presence of a seed bank and conservation status), climatic data 
(precipitation and temperature) specific to the location and timing of the study, and whether soil 
disturbance was included in the competitor removal treatment.   

The vast majority of studies identified by our literature search took place in grasslands.  
Study authors classified these habitats as oligotrophic, mesic, semi-arid or Mediterranean.  We 
used these same habitat categories in our analysis, with the exception that we combined semi-
arid and Mediterranean habitats into one category given that these systems both tend to be 
shaped by strong inter-annual variability in water availability (Levine and Rees 2004).   

If authors did not provide ecological characteristics of their study species, we obtained 
these data from outside sources (seed mass from: Kew Botanical Gardens seed database [Liu et 
al. 2008]; presence of seed bank: Thompson et al. 1997).  In addition, we classified all species as 
either “of conservation concern” or “not of concern.”  Plants were classified as “of conservation 
concern” if they were listed as vulnerable, threatened, rare or endangered by either IUCN or 
USFWS or identified by the study authors as “declining.” 

In order to compare the effect of competitor removals on vital values that can differ by 
several orders of magnitude (e.g. proportion of seeds emerging versus seed set per plant), we 
required an effect size that could provide a relative measure of change with management.  We 
chose the response ratio (R):   

C

T

X
XR =            (9) 

in which XT and XC are the mean demographic rates of a species in managed plots and 
unmanaged plots, respectively (Hedges et al. 1999).  We used the natural log of the response 
ratio (ln(R)) in our analyses to meet assumptions of normality, but report results in units of R 
(eqn. 9).   
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In meta-analyses, study effect sizes are typically weighted by some estimate of study 
precision.  In parametric meta-analyses, this precision is usually quantified as the inverse of 
within-study variance, a function of standard deviation and sample size.  Variation of the 
response ratio is given as: 

( )
( ) ( )
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2
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2
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R Xn
S
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SV +=ln          (10) 

in which ST, SC, nC and nT are, respectively, the standard deviations and the number of replicates 
for control and treatment plots (Normand 1999).  Because a number of our studies did not report 
standard deviations nor the information to calculate them, we chose instead to use a non-
parametric measure of study precision (Vnp) based on sample sizes alone (Adams et al. 1997):   
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np nn

nnV +
= .          (11) 

First, we tested for differences between habitat types in the effect of management on each 
rate as a random-effects weighted analysis of variance (ANOVA).  In each analysis, study effect 
sizes (eqn. 9) were weighted by the inverse of their non-parametric variance estimate (eqn.11).  
Our use of non-parametric estimates of study variance precluded the use of parametric statistics 
to calculate p-values.  Thus, p-values were calculated using a bootstrap procedure (Adams et al, 
1997).  Analyses were carried out in Metawin 2.1 (Rosenberg et al. 2000).  Studies concerning 
the effect of competitor removals on fecundity rates only included one species in oligotrophic 
habitats, so this habitat category was dropped in our analysis of fecundity rates. 

 We then tested the ability of our selected covariates to explain between-species 
heterogeneity in effect size for each vital rate in each habitat type using a random effects 
multiple regression approach.  For subsets of vital rate data from species in each habitat 
category, we started with a model that included all covariates, then simplified these models using 
backwards stepwise selection to eliminate covariates with non-significant effects.  Analyses were 
carried out using the module Metareg in STATA (version 11; STATA Corporation, College 
Station, Texas) (Sharp 1998).  P-values were calculated through permutation tests to account for 
our use of non-parametric variance estimates (“permute” option in STATA; Higgens et al. 1999). 

Determining the effect of climatic variability on management effects 
To incorporate the effects of climatic variability into our analysis, we obtained climate 

data from a number of climate databases (US and global: NOAA National Climatic Data Center; 
Europe: Koninklijk Nedelands Meteorologisch Instituut; Canada: National Climate Data and 
Information Archive; UK: MetOffice; Australia: Bureau of Meteorology; New Zealand: National 
Institute of Water and Atmospheric Research).  For each study, we identified the weather station 
closest to the study site, and the appropriate time frame for the development of each life stage 
based on the experimental census periods and life history information.  For each month of the 
appropriate time period, we obtained data on both the deviation from average precipitation 
(DPNP in mm) and deviation from average temperature (DPNT in degrees Celsius), and 
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calculated study-specific seasonal average of both.  Because extreme precipitation events may 
also have an effect on experimental outcomes that might be obscured by averaging, we also 
recorded the DPNP of the driest and wettest months for each study.  We used deviations from 
average precipitation and temperature as our climate variables so that we could compare across 
regions that experience very different climate conditions (as opposed to absolute temperature or 
precipitation values).   

Temperature and precipitation are often correlated, so we tested for significant 
correlations before including these two parameter types in our analysis.  In semi-arid habitats, 
temperature and precipitation variables were significantly correlated (P = 0.019, r2 = -0.506), and 
so we included only precipitation variables when analyzing data from these habitats.  In mesic 
and oligotrophic habitats, we found no correlation between temperature and precipitation (P = 
0.074, r2 =0.398 and P = 0.692, r2 = -0.14), and so included both variables in our models.  
Likewise, because our three precipitation variables (seasonal average, wettest month, driest 
month) were interdependent, we tested each variable in a univariate analysis, then picked the best 
one (highest R2) to be in our full model.  Of the three precipitation variables, the mean seasonal 
DPNP demonstrated the best explanatory power in mesic habitats.  In oligotrophic and semi-arid 
habitats, the DPNP of the driest and wettest month, respectively, demonstrated the best 
explanatory power.   

 

Results and Discussion 
Life history modeling 

  

Results from our deterministic model for the arroyo toad demonstrate that population 
growth rate is strongly influenced by adult and juvenile survival (Figure 4).  The steep slope of 
the curves in Figure 4 indicate that even small changes in these rates can have a large impact on 
its long term population persistence.  When tadpole survival is low (20%; Figure 4a), the 
population will always decline if annual adult survival drops below 62%, even if all females 
successfully breed and lay eggs every year.  However, if the survival of the toad’s terrestrial 
stages (the adult and juvenile stages) is very high, it can endure relatively low rates of breeding 
success, with the minimum threshold for positive population growth at 19% of females 
successfully breeding each year.  Even a small increase in tadpole survival can lead to a 
relatively more optimistic picture:  when tadpole survival is increased from 20% to 30% (Figure 
4b), the toad population could persist with adult survival rates as low as 45% at 100% breeding 
success. 
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Figure 4:  The relative contribution of breeding success (the probability a female successfully 
finds a mate and lays eggs in any given year) and the annual survival rate of adult and juvenile 
toads on population growth rate.  Areas to the right of each curve represent parameter 
combinations that lead to positive population growth rate (λ > 1), and to the left, population 
declines (λ < 1).  In plot (a) tadpole survival is 0.2 and metamorph survival is 0.1; in (b) tadpole 
survival is 0.3 and metamorph survival is 0.1.  Juvenile survival is set to be half that of adults.  
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These results illustrate the importance of identifying and alleviating mortality factors in 
the arroyo toad’s terrestrial stages.  Except during the breeding period, the arroyo toad is thought 
to be essentially terrestrial (USFWS 1999), and as such, the survival of adult and juvenile toads 
may depend on the availability of adequate terrestrial habitats.  Our results highlight the 
importance of identifying these terrestrial resource needs and the factors that might be negatively 
impacting them.  In addition, our results suggest that even sources of juvenile and adult mortality 
that are seemingly minor, such as crushing by vehicles, could potentially have large impacts on 
population growth rate. 

Including variability in all vital rates so that they vary at 25% of their maximum possible 
standard deviation (σ) values (eqn. 3 and 4) greatly reduces the parameter space of positive 
population growth for the arroyo toad (Figure 5).  However, an additional increase in the 
variability of breeding success and egg survival to 75% of their maximum possible values has 
little additional effect on population growth.  In contrast, increasing just the variability of 
survival rates for the aquatic stages of this toad (larval and metamorph survival) to 75% of their 
maximum values always results in population declines (no parameter combinations of adult 
survival and breeding success lead to positive growth).  This highlights the importance of 
accurately estimating survival of the aquatic stages of the arroyo toad, and the strong sensitivity 
of population performance estimates to errors in the estimation of these parameters. 
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Figure 5: Stochastic model results for arroyo toad.  Parameter values are the same as in Figure 4, 
but now all vital rates vary with the σ of each vital rate set at 25% of its maximum value, or with 
the σ of egg survival and breeding success set at 75% of its maximum value (and all others at 
25%).  Setting the σ of larval and metamorph survival at 75% of its maximum value always 
results in population declines, and thus is not shown.   
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Effects of management actions on avian nest success 
Results from our meta-analysis of bird nest success indicated that all management 

interventions increase nest success on average, with predator removal programs resulting in the 
greatest increase (P = 0.045; Figure 6).  Nest success was approximately 1.2 standard deviations 
greater in plots with predator removal than in non-removal plots, whereas controlled burns, 
livestock exclusion and cowbird removals resulted in nest success increases 0.52, 0.46 and 0.75 
standard deviations greater than their respective controls.  Results from livestock exclusion 
studies were by far the most variable, with the 95% CI intervals overlapping zero.  In contrast, 
results from just the subset of species considered to be of conservation concern indicated that 
livestock exclusion produced the largest increase in bird nest success, though high variation led 
to low statistical power (P = 0.55).  On average, nest success was approximately 1.3 standard 
deviations greater in livestock exclusion plots for these species, while controlled burns, cowbird 
removals and predator removals resulted in nest success increases 0.66, 0.84 and 1.2 standard 
deviations greater than their respective controls. 
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Predator removal

 
Cowbird removal

 
Livestock exclusion

 

Controlled burns

0 1 2   3
Hedge's d

 
 

Figure 6: The mean effect of the four management interventions reviewed for both the full set of 
bird species, and for only species considered to be of conservation concern.  Hedge’s d is the 
difference in nest success between managed and unmanaged plots, standardized by the size and 
precision of each study.  Values greater than zero mean the management action increases nest 
success, values less than zero indicate a decrease in nest success under management.  The 
number of species is in parentheses.  Error bars represent 95% bootstrapped confidence intervals. 
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Of the four management interventions analyzed, our chosen covariates were only able to 
significantly explain variation in species’ responses to controlled burning.  In particular, when all 
other covariates were controlled for, increases in nest success between burned and unburned 
plots increased with the amount of time elapsed since the burn (P = 0.03), and species in shrub 
dominated and woodland habitats demonstrated significantly smaller increases in nest success 
than those in grasslands (P = 0.047 and 0.01, respectively).  Regarding the generality of the 
positive trend in nest success with increasing time since fire, an important caveat to consider is 
that grassland birds appeared to gain the greatest benefits from burning, and most of these 
species experienced annual burns.  In our analysis, we excluded several studies in grassland 
systems that examined longer fire-return intervals because they lacked unburned controls, or 
combined burning treatments with grazing treatments.  As a consequence, the increased benefit 
with increased time since fire indicated by our results should not be extrapolated to grassland 
systems.  

While all four of the management interventions reviewed increased bird nest success on 
average, predator removal programs were by far the best option for increasing nest success when 
both common species and species of conservation concern were considered together, with an 
average increase more than twice that of the other treatments.  However, when we considered the 
effects of these management actions on only threatened, endangered or declining species, we 
found that livestock exclusion resulted in the largest average increase in nest success.  Thus, for 
some species of concern, habitat restoration measures can be just as, and possibly more effective 
than, predator and parasite control.   

Results from livestock exclusions were far more variable than those of the other 
treatments, and our analysis indicated that much of this effect size heterogeneity was due to 
differences in the responses of individual species to this management action.  While none of the 
covariates we tested were statistically able to explain this variation, some noteworthy patterns 
emerged.  As noted above, the most striking pattern is the large increase in nest success 
experienced, on average, by species of conservation concern when grazers were excluded from 
their nesting habitat.  In contrast, more common species only exhibited a relatively small (and 
non-significant) increase in nest success.   

In order to make comparisons across management types we focused our analysis on bird 
nest success.  As such, we run the risk of underestimating the true effects of brood parasite 
(cowbird) removal programs, the main impact of which should be on host recruitment rates.  
However, we found that cowbird removals resulted in nest success approximately 0.75 standard 
deviation units higher than in non-removal sites, lending support to the idea that in addition to 
reducing parasitism rates, cowbird control also decreases overall abandonment and nest 
predation rates (Zanette et al. 2007).  Unfortunately, the relatively small number of studies 
documenting the effects of cowbird removals makes it difficult to make robust inference from 
such results, highlighting the necessity of these types of studies.  While the existing literature on 
the effects of cowbirds on their hosts is extensive (e.g. Lorenzana and Sealy 1999), the results of 
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our literature search indicate that studies documenting the actual effect of cowbird management 
on host populations remain relatively rare.  

Overall, our results suggest that all four management actions can be beneficial in 
increasing bird nest success, and that, in some cases, habitat restoration measures can be as or 
more effective at increasing nest success as direct control of predators and brood parasites.  We 
focused on nest success in this study because this demographic rate is by far the most widely 
studied and reported for bird species (Faaborg et al. 2010), and is considered to be a good 
indicator of habitat quality (Pidgeon et al. 2006).  However, the ultimate importance of nest 
success to the population growth rate of any one bird species will depend on that species’ 
individual life history (Saether and Bakke 2000).  Yet while the importance of collecting more 
comprehensive demographic data (both reproduction and survival rates) in association with 
manipulative management studies has been widely recognized (e.g. Sherry and Holmes 1995, 
Donovan et al. 2002, Fletcher et al. 2006), studies doing so remain rare. 

Effect of competitor removals on plant demographic rates 
The effect of competitor removals on seedling establishment and seedling survival 

differed significantly across habitats (Figure 7; P < 0.001 and P = 0.005 respectively), with 
species in oligotrophic habitats experiencing the largest increases as a result of management.  
While there was considerable variation in the results of management on species in oligotrophic 
habitats, these results were consistently positive.  In contrast, the 95% CI of the mean effect size 
of competitor removal treatments on seedling survival and reproductive output in semi-
arid/Mediterranean habitats overlapped zero, indicating that this management action does not 
always to lead to increased rates for target species in these habitats.  The effect of management 
on fecundity measures did not significantly differ between mesic and semi-arid habitats (P = 
0.07).  
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Figure 7: Mean increases in seedling establishment, seedling survival and fecundity of various 
plant species after the implementation of management to decrease resource competition, 
partitioned by habitat type. Values greater than 0 indicate an increase in the vital rate with 
management.  Error bars denote 95% bootstrap confidence intervals. Values in parentheses are 
the number of species studied. 

 

Determining the effect of climatic variability on management effects 
Our analysis of the covariates determining the direction and magnitude of the effects of 

competitor removals on plant vital rates within each habitat type indicated that the effect of 
climate on management also varied between plant life stage and habitat types.  Precipitation 
levels had no discernable influence on the effect of competitor removals on seedling 
establishment rates in semi-arid habitats, only the conservation status of the target species 
significantly explained variation in effect size across species (P = 0.046).  In contrast, in mesic 
and oligotrophic habitats, both precipitation and temperature significantly explained differences 
in management effects on seedling establishment rates across species.  In mesic habitats, the 
effect of management on seed germination rates was significantly greater for species with 
persistent seed banks (P = 0.001) and increased as a function of increasing mean seasonal 
precipitation and decreasing mean seasonal temperature (P = 0.041 and P = 0.006, respectively; 
Figure 8).  There was no significant interaction between presence of a seed bank and climate 
variables.  In oligotrophic habitats, effect size increased as a function of decreasing precipitation 
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(DPNP of driest month) and with decreasing seed size (P < 0.001 and P = 0.007, respectively; 
Figure 9).   

In contrast, our analysis of management effects on seedling survival rates revealed almost 
the opposite trend as that found for seedling establishment.  Precipitation significantly explained 
differences in results from studies of competitor removals on seedling survival rates in semi-arid 
habitats (P = 0.001; Figure 10).  Regressing seedling survival against the DPNP of the wettest 
month occurring during the seedling growth period in each study, we found that management is 
most effective at increasing seedling survival during growing seasons without intervals of high 
precipitation (e.g. no months experience greater than average rainfall).  In contrast, none of our 
covariates significantly explained variation in the effect of management on seedling survival in 
mesic and oligotrophic habitats.   

Climate variables had no statistically discernable effect on the ability of management to 
increase the reproductive output of target plants.  This result may be due to the smaller sample 
sizes of studies quantifying management effects on plant fecundity measures. 
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Figure 8:  In mesic grasslands, the ability of management to increase seedling establishment rates 
significantly increases with increasing mean seasonal precipitation (slope = 0.018; P = 0.04).  
DPNP is mean departure from normal precipitation.  Marker size indicates the relative weight of 
study results, a function of study sample size. 
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Figure 9: In oligotrophic grasslands, the ability of management to increase seedling emergence 
rates decreased significantly with increasing mean seed mass of the target species (slope = -0.71; 
P = 0.007).  Marker size indicates the relative weight of study results, a function of study sample 
size. 

 

 
Figure 10: In semi-arid grasslands, the ability of management to increase seedling survival rates 
significantly decreased in very wet growing seasons (slope = -0.025; P = 0.001).  DPNP is mean 
departure from normal precipitation.  Marker size indicates the relative weight of study results, a 
function of study sample size. 
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Our results indicate that climate variables can have a strong influence on the ability of 
management to increase plant vital rates, but that these effects vary between the vital rate 
measured and the habitat in which the study took place.  In oligotrophic and mesic habitats, 
precipitation and precipitation and temperature together influenced seedling establishment rates 
respectively, yet neither of these variables could significantly explain variation in seedling 
survival rates in these habitats.  In contrast, in semi-arid habitats, precipitation had no consistent 
influence on seedling establishment, yet was the only significant covariate explaining variation 
in seedling survival rates.  Most notable, in semi-arid habitats, our results indicate that if 
competitor removals are undertaken in growing seasons with very high precipitation levels, this 
management effort has no effect on, and sometimes even decreases, seedling survival.   

Why might high precipitation lead to decreased management effectiveness in semi-arid 
habitats?  One answer may be that in rainy seasons, surrounding vegetation recovers more 
quickly from management, resulting in similar vegetation cover in control and treatment plots 
and little overall reduction in competitive pressure on target plants (e.g. Holl and Hayes 2006).  
More perplexing is the result that in very rainy years, management actions may actually decrease 
seedling survival of target plants.  It has previously been shown that cutting and subsequent re-
growth can result in stronger resource depletion by the re-sprouting vegetation (Silvertown et al. 
1992, Edwards and Crawley 1999).  Therefore, cutting surrounding vegetation to decrease 
competition on some target plant in very rainy conditions, which allow for rapid re-growth of the 
cut vegetation, may paradoxically lead to stronger competition pressures exerted on the target 
plant. 

Our results indicate that competitor removal treatments in oligotrophic habitats lead to 
the greatest increases in both seedling establishment and seedling survival rates, though these 
results were also the most variable.  This result is largely a consequence of the very low 
germination rates in this habitat in the absence of management.  Our results also emphatically 
confirm the oft reported result that competition has a stronger inhibitive influence on 
establishment of small seeds than larger (e.g. Coomes and Grubb 2003), as our results suggest a 
significant increase in the effect of competitor removals with decreasing seed size.  Precipitation 
also strongly influenced this between species variation, with studies taking place in drier than 
average years leading to increased effectiveness.  Again, this result may be a consequence of 
slower re-growth of the clipped/removed vegetation in drier seasons, giving the target species 
more time to establish before competition sets in.   

Our effect size choice may have influenced the results of our meta-analysis of 
management effects on plant vital rates.  As a measure of proportional increase, the response 
ratio inflates very small absolute increases.  Using another effect size, such as Hedge’s d, that 
measures the absolute difference between vital rates in control and treatment (Hedges and Olkin 
1985), could very well lead to different conclusions.  However, we considered the response ratio 
to be the most appropriate effect size measure for comparing management effects because it 
provides a measure of relative increase across vital rates: we are comparing the effect of 
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management across vital rates which differ vastly in their values.  Both seedling establishment 
and seedling survival are probabilities that range from zero to one, yet establishment values tend 
to be extremely small (e.g. 0.005), whereas seedling survival tends to be much higher (e.g. 0.2), 
while seed set values can be in the thousands.  In order to compare the effects of management 
actions on these different values, we needed a relative measure of effect.   

Do these results give us any useful information for more effective management of plant 
populations?  Our clearest results concern species in semi-arid and oligotrophic habitats, in 
which management is most effective at increasing vital rates in drier years and less effective in 
wetter years.  Seasons with drier conditions should inhibit growth of many exotic grasses, a 
major source of resource competition for plant species of concern in these environments.  These 
results suggest that an efficient management approach may be to postpone management efforts in 
wetter years, or to apply management with more effort (e.g. mowing or weeding more often) to 
inhibit re-growth of problematic vegetation.  Our results also re-emphasize the importance of 
placing the outcome of any management action in its specific context, including local climate 
conditions, and in quantifying management effects in more than one year before determining if 
management is having its desired effect.  By understanding how environmental variation alters 
the effects of management actions, either by negating or enhancing these effects, we may be able 
to determine guidelines for what environmental conditions should be take into account when 
developing and implementing ecological research and management plans.  

Management of Chorro Creek bog thistle, Camp San Luis Obispo 
 The Chorro Creek bog thistle (Cirsium fontinale var. obispoense) is a federally 
endangered species restricted to San Luis Obispo County, California.  One of the largest 
populations occurs at Camp San Luis Obispo.  In November 2010, we met with managers from 
Camp Roberts, Camp San Luis Obispo and Fort Hunter Liggett to discuss the use of generalized 
population models to prioritize management actions and data collection efforts for the bog thistle 
(henceforth: CCBT).  In particular, managers have been concerned with understanding the 
importance of cattle trampling/grazing, seed predators and inter-specific competition as potential 
threats to the long term population viability of this species, as well as identifying and exploring 
potential management actions they could undertake to ensure CCBT’s persistence.   

We developed a basic life history model for CCBT (see Appendix A for the life history 
diagram and model) and determined how population growth is predicted to change as a function 
of the vital rates associated with management concerns.  The vital rates of concern include the 
probability of a seed surviving to germinate (seed predation), the probability of successful 
seedling establishment (inter-specific competition) and the survival of adult plants (trampling 
and browsing by cattle).  Seedling establishment rates in plants are often extremely variable, 
dependent on climatic conditions to cue germination and allow seedlings to establish, and as on 
microsite and seed availability (Harper 1977).  Thus we were particularly interested in how 
variability in seedling establishment rates would affect our model output.   
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Survival of adult CCBT (from the seedling stage to flowering) is typically quite high 
(greater than 60%; David Magney Environmental Consulting 2006), and results from our 
deterministic model suggest that the population can persist with seedling establishment rates less 
than 10% (Figure 11a).  Our deterministic model results also suggest that population growth rate 
is relatively insensitive to changes in seed survival rates (from 40% to 10% plotted in Figure 9).  
However, when we include high variability (75% of the maximum possible standard deviation) 
in seedling establishment rates, we see the parameter space for positive population growth 
shrinks drastically.  Now seedling establishment rate must be much higher (at least greater than 
15%) for populations to persist and small changes in seed survival rates result in large 
differences in potential growth rate (Figure 11b).  

Seedling establishment rates tend to be very low in many plant species, and are 
considered a bottleneck for plant population growth (Harper 1977, Grubb 1977).  Our model 
results indicate that with strong environmental variation, CCBT would need to achieve relatively 
high seedling establishment rates for long term persistence.  In the USFWS 5-year status review 
of the Chorro creek bog thistle, understanding the potential impacts of intra-specific competition 
on this species was specifically singled out as a topic in need of further investigation (USFWS 
1998).  We discussed the design for a manipulative seed sowing experiment, which would allow 
managers to determine both seedling establishment rates and the effect of competitive 
interactions from surrounding vegetation on this rate.  We also discussed potential for a 
collaborative effort in which data from these field experiments could be coupled with our 
modeling efforts in an adaptive management framework to quantitatively determine the impact 
of potential management actions (such as the re-introduction of grazing) to achieve long term 
stability and recovery for this species. 
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Figure 11: The relative contribution of adult survival (to flowering), seed survival, and the 
probability that a germinating seed successfully establishes on the Chorro Creek bog thistle’s 
population growth rate, as predicted by a deterministic (a) and stochastic model (b).  As in Figure 
4, areas to the right of each curve represent parameter combinations that lead to positive 
population growth rate (λ > 1).  Each curve represents a different probability of a seed surviving 
to germinate.   
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PART 2:  INTERPRETING ABUNDANCE DATA: TIME-SERIES 
POPULATION VIABILITY ANALYSIS 

 

Background 
An accurate assessment of endangered species population trend and future viability is 

essential to sound management decisions.  In some cases a positive trend is a criterion for 
downlisting or delisting a species; in others, a declining trend triggers specific management or 
recovery actions.  Implementation of a monitoring program is a core recovery action for most 
species (Neel et al. in prep) and provides the basis for assessment of a population’s risk of 
extinction. 

One of the most common types of empirical data resulting from monitoring programs is a 
time series of abundance.  These data can be complete counts where every individual in the 
population is censused or, more commonly, abundance is estimated using established methods or 
indexed where a constant proportion of individuals in the population are counted.  All of these 
data types are suitable for fitting stochastic models of population growth, several of which have 
been developed to include things like the observation error associated with abundance estimates, 
stochastic processes related to environmental conditions that cause populations to fluctuate 
randomly through time, density dependence in which intra-specific competition affects growth 
rates, and, most importantly, environmental covariates that can be tied to management actions. 

Population trend, or change in population abundance over a period of time, can be 
quantified from parameter estimates of these population growth models.  Stochastic growth 
models can take into account the influence of sampling error or process (environmental or 
demographic) variance and can be used to quantify the effect of environmental or management-
related factors on population growth.  These models can be further categorized as exponential 
growth models, in which changes in population abundance are unaffected by the density of 
organisms in the population, or as density-dependent models in which a population’s density 
influences its growth rate.  Accurate assessment of population trend is absolutely dependent on 
using the correct model (exponential growth models with or without sampling error and process 
noise, or density-dependent growth models) to describe growth for a particular population.  
Choosing the correct model also affects our ability to accurately predict future abundance or 
persistence of the population. 

 

Methods 
Modeling population growth and trend 

We can use time series of population abundance to answer fundamental questions about 
the status and viability of a population.  What is the “trend”?  Is the population increasing, 
decreasing, or stationary?  What is its probability of persistence into a period of time in the 
future?  Is there density dependence in annual growth rates?  How do environmental conditions 
affect population growth rates?  Being able to quantify population trend and how it is influenced 
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by density dependence or external factors allows us to form effective management strategies to 
stabilize or recover endangered species. 

Estimation of population trend can be used for two primary purposes:  first, to quantify trend for 
its own sake (e.g., is my population of concern increasing or decreasing?), and second, for 
incorporating into PVA models.  For the second purpose, we fit population growth models to 
abundance data collected over time.  After fitting the models, parameter estimates from the most 
appropriate model can be used to predict future population trajectories and estimate the 
probability of persistence under different management scenarios or environmental conditions.  A 
discussion of all the models used to estimate population growth can (and does) fill textbooks (see 
Morris and Doak 2002 and Mills 2007).  Here we’ll briefly describe six specific models that 
incorporate stochasticity.  The first three are density independent models.  The remaining 
population growth models are density dependent and are presented assuming discrete and 
equally-spaced sampling times. 

 

1.  Exponential growth with observation error (EGOE):  This model assumes that variability in 
the data arises purely from the imprecision of abundance estimates (observation or sampling 
error), with the population itself governed by deterministic exponential growth.  The model for 
deterministic exponential growth takes the form 

( ) ( )0ln lntn n tμ= +  

where nt = abundance at time t and μ  is the trend parameter which can be interpreted as 
the expected difference in log-abundances separated by one time unit. 

Now let x(t) = ln(nt) be the true log abundance at time t and Y(t) be the estimated or 
observed log abundance.  The stochastic model for Y(t) is 

( ) ( )Y t x t F= +  

where, on the log scale, F is normally distributed observation error with mean = 0 and 
variance = 2τ  written as ( )2~ 0,F normal τ . 

 

  

 30



   

2.  Exponential growth with process noise (EGPN):  This model assumes the population 
abundances through time are measured without error but that deviations from deterministic 
growth arise from environmental stochasticity causing random fluctuations in population growth 
rate (i.e., process noise; Dennis et al. 1991, Lande et al. 2003).  Thus, the stochastic model for 
changes in log abundance from time t to time t + dt is 

( )t td X dt dBμ= +  

where ( )2~ 0,tdB normal dtσ  

 

3.  Exponential growth with process noise and observation error (EGSS):  This model has been 
called the exponential growth state-space model (Dennis et al. 2006, Holmes 2001, Staples et al. 
2004) and assumes that variability in abundances results from both sources of variation 
(observation error and process noise).  Thus, the EGSS model can be written as a combination of 
the EGPN and EGOE models. 

( )td X dt dBμ= + t  stochastic process governing actual abundances 

t tY X F= +   stochastic process governing observed or estimated abundances 

 

4.  Ricker:  This model assumes that changes in log abundance are a decreasing, linear function 
of population size (i.e., growth rate is depressed as the population gets larger). 

( )1ln /t t tN N a bN E+ = + +  

 

where a = maximum growth rate at N = 0 (i.e., Rmax) and b = effect of intraspecific 
competition; and ( )2~ 0,E normal σ  

 

5.  Gompertz:  The Gompertz growth model is similar to the Ricker model except that growth 
rate is a decreasing, linear function of the natural logarithm of population size. 

( ) ( )1ln / lnt t tN N a b N E+ = + × +  
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6.  Theta-logistic:  Again, the theta-logistic growth model is similar to the Ricker model except 
that in this case, growth rate is a decreasing, linear function of population size raised to the 
power theta (θ). 

( )1ln /t t tN N a bNθ
+ = + + E  

 

Unfortunately, fitting some of these models can be numerically intensive, and to date 
there have been no pre-written software programs that can fit and provide parameter estimates 
for all of the models described above.  Managers and applied ecologists have not been able to 
take advantage of new techniques effectively.  To remedy this problem, we have developed user-
friendly software called PopGrowth to perform the calculations necessary for parameter 
estimation for each of the models.  

PopGrowth is intended for use by natural resource managers who wish to evaluate 
population trend or persistence using monitoring data.  PopGrowth is a program written to 
facilitate estimation of relevant parameters of stochastic population growth models based on 
time-series of abundance data.  After estimating model parameters, these estimates can be used 
to infer population trend or predict future viability of the population.  The program is written in 
Visual Basic 6, which provides a “front-end” user-friendly interface.  When running PopGrowth, 
the free statistical computing software R (http://cran.r-project.org/) and R contributed package 
PopGrowth4 is used for many of the calculations.  This is done in the background and users do 
not need to be familiar with R to use PopGrowth.  A PopGrowth installation guide and tutorial is 
included as Appendix C. 

Time-series of abundance data can be imported from Excel spreadsheets or text files.  
The user can then select several stochastic growth models to fit to the data.  PopGrowth output 
provides a printout of the input data, parameter estimates for each model, model residuals and 
model selection criteria (e.g., Akaike’s Information Criterion, AIC). 

Parameter estimates from population growth models provide not only the means to 
quantify population trend but also to calculate metrics that describe extinction risk (e.g., mean 
time to extinction, probability of falling below a population threshold).  Once we have obtained 
parameter estimates, we can enter them into a simulation program such as MetaPVA (described 
in “Managing Multiple Populations” section below) to calculate the population size in one year 
time steps into the future, starting with the current population size.  The simulation program 
repeats this calculation hundreds of times, accounting for environmental variation, to produce 
estimated probabilities of extinction risk. 

For three population growth models (EGPE, Ricker and Gompertz), PopGrowth 
calculates model residuals.  These can be used to identify correlations among populations in a 
metapopulation or investigate possible influences of environmental covariates on growth rates. 
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As emphasized above, selection of the most appropriate model is essential to accurately 
projecting population growth or persistence.  PopGrowth calculates AIC for four models (EGPE, 
Ricker, Gompertz, and theta-logistic) to provide an information-theoretic basis for evaluating 
which model is best supported by the data. 

PopGrowth also includes an option for “Viable Population Monitoring” (VPM; Staples et 
al. 2004). A recent development in the conservation biology literature, VPM is a risk-based 
monitoring strategy that seeks to monitor the viability of a population through time instead of 
monitoring the population abundances and relying on estimates of trend.  It offers greater power 
to detect “problems” with the population’s viability than relying on statistical measures of a 
“significant” trend (Staples et al. 2004).  PopGrowth provides an easy way to implement VPM 
for annual evaluation of risk. 

Dealing with unequal time intervals when modeling population growth and trend 
Missing data in time series observations of population abundances are a recurring and 

frustrating problem.  Many statistical models for ecological time series data, especially those 
incorporating realistic population dynamics, require observations spaced at equal time intervals.  
Ecological sampling however involves constraints of time, personnel, and budgets and do not 
always live up to the designs and requirements of statistical models.  As well, ecological systems 
that have intrinsically continuous-time dynamics, such as some aquatic systems, are sometimes 
sampled at unequal time intervals.  The data that exist in studies with missing data or unequal 
time intervals are potentially informative, and precluding such data from analysis could affect 
conclusions regarding the biological resources in question.  Ecology could benefit from having 
better models for accommodating time series data with unequal time intervals. 

Recently Dennis et al. (2006) described a “state-space” population model for use in 
ecological time series analysis.  The model, termed the Gompertz state space (GSS) model, 
represents one of the simplest possible formulations containing density dependence, stochastic 
process variability, as well as stochastic observation or measurement error.  The simplicity of the 
model allows for an explicit likelihood function and for parameter estimation through ordinary 
numerical maximization.  State space population models of greater complexity require 
simulation-intensive computer algorithms for fitting (de Valpine and Hastings 2002, de Valpine 
2002, 2004, Clark and Bjornstad 2004, Ionides et al. 2006, Lele et al. 2007, Ponciano et al. 
2009).  Unfortunately, the GSS model as described by Dennis et al. (2006) does not 
accommodate observations collected at unequal time intervals, as caused for example by missing 
data or by survey design.  

A special case of the GSS model is a density independent state space model.  The 
exponential growth state space (EGSS) model was introduced by Holmes (2001), and parameter 
estimation was studied by Lindley (2003) and Staples et al. (2004).  The EGSS model has been 
generalized to apply to unequal time intervals (Staudenmayer and Buonaccorsi 2006, Humbert et 
al. 2009). 
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We have extended the full density dependent GSS model to unequal time intervals.  The 
method used is to employ a continuous-time diffusion process model, the Ornstein-Uhlenbeck 
process, for population abundance on the logarithmic scale.  The resulting state space model has 
discrete-time statistical properties identical to those of a GSS model.  The generalization makes 
accessible a parametric bootstrap likelihood ratio test of density independence versus density 
dependence for time series abundance data with missing observations.  An R program for fitting 
the model to data is provided in Appendix C. 

 

Results and Discussion: Evaluating Persistence of Greater Sage-Grouse, Yakima Training 
Center 

Greater sage-grouse (Centrocercus urophasianus; sage-grouse, hereafter) have declined 
in both numbers and distribution throughout most of the western United States and now occur on 
less than 60% of their pre-settlement range (Schroeder et al. 2004).  UFWS is currently 
reviewing the status of sage-grouse range-wide to determine whether listing under the 
Endangered Species Act is warranted (USFWS 2008).  With 47 DoD installations falling within 
the current sage-grouse range, DoD recognizes the need to actively manage the species and its 
sagebrush habitat to stabilize or increase sage-grouse populations across its range (DoD and 
USFWS 2007).   

The species’ decline is particularly pronounced in Washington, where it occupies only 
about 8% of its historical range in the state (Stinson et al. 2004).   The sage-grouse was listed as 
a threatened species by the state of Washington in 1998 and a recovery plan for Washington was 
released in 2004 (Stinson et al. 2004).  A population of less than 400 birds is found in contiguous 
shrub-steppe on Yakima Training Center (YTC), an Army training facility.  As one of two 
primary populations of sage-grouse in Washington (Figure 12), the YTC population is critical to 
persistence of sage-grouse in Washington.   

Natural resource managers at YTC are charged with helping to meet the state’s recovery 
goal of 3,200 sage-grouse state-wide.  Through seasonal restrictions on training near sage-grouse 
leks, an intensive monitoring program, and habitat restoration, YTC’s sage-grouse management 
plan seeks to reverse the species’ decline on Army lands.  Managers are interested in determining 
the efficacy of ongoing protection and restoration measures in increasing sage-grouse 
persistence, both at YTC and for the Washington population as a whole.  Specifically, managers 
posed the following questions: 

1.  Under current training and management programs, what is the probability of persistence 
of the YTC population over 30 and 100 years?  

 
2. For leks with the greatest amount of protection, how does each contribute to persistence 

of the YTC population? 
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We provided information to answer these questions to fit population growth models and estimate 
the probability of extinction under different scenarios specific to each management question.   

 

.  

Figure 12.  Historical range (light blue) and current distribution (dark blue) of greater sage-
grouse in western North America.  Red circle highlights the location of the Yakima population of 
sage-grouse, Yakima and Kittitas Counties, Washington. 

 

 

Analytical Approach 
Sage-grouse lek counts have been conducted at a few leks at YTC since 1970, but in 

1989 YTC biologists began extensive counts that included more leks and more systematic 
monitoring.  Efforts increased again around 2002, when multiple counts began at each lek during 
each breeding season (YTC 2008).  Today YTC continues to conduct one of the most intensive 
sage-grouse monitoring programs available.  In the long-term dataset, however, there remain 
data gaps for years in which not all leks were counted.  To address this problem and develop a 
long-term dataset for trend analysis, we used existing lek counts to reconstruct an index for 
historical abundances of the population (see Garton and Horne in press).   

In earlier work, we used the program PopGrowth to fit a series of population growth 
models to sage-grouse lek count data collected between 1972 and 2006.   With abundance data 
only (i.e., no environmental covariates), we found that there was no single “best” model to 
describe population growth.  Because competing models provided different parameter estimates, 
there was too much uncertainty in population projections using those estimates to be reliable. To 
reduce uncertainty, we next incorporated environmental covariates to estimate the amount of 
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model error that could be attributed to environmental stochasticity and density dependence.  We 
used an object-oriented analysis of historical LANDSAT satellite images of the Yakima area to 
develop maps of major land cover types in 1972, 1982, 1992, and 2006.  From these maps we 
estimated the amount of each cover type at YTC for every year between 1972 and 2006, 
interpolating within intervals to obtain annual estimates.  We obtained climate data for each year 
to evaluate the influence of temperature, precipitation, drought, and snow on sage-grouse 
population growth.  Using this dataset (Table 2) we fit a series of exponential and density-
dependent population growth models to sage-grouse lek counts from 1972-2006.  We used an 
information-theoretic approach (Burnham and Anderson 1998) and Akaike’s Information 
Criterion for small sample sizes (AICc) to evaluate the plausibility of each model.   

 

Table 2.  Environmental covariates included in population growth models for sage-grouse at 
Yakima Training Center, Washington, 1972-2006.   

Covariate Description 

Sage Area of sage shrublands (km2)  

Grass Area of grasslands (km2) 

Mean Temperature (MT) Mean monthly temperature (oF), March-May  

Mean Precipitation (MP) Mean monthly precipitation (in), March-May  

Departure from Normal Temperature 
(DNT) 

Mean departure from normal monthly 
temperature (oF), March-May 

Departure from Normal Precipitation 
(DNP) 

Mean departure from normal monthly 
precipitation (in), March-May 

Snow Maximum snow depth (in), December-March 

PDSI Palmer Drought Severity Index score 

Hours<4C Number of hours with temperatures < 4oC, 
October-March 

 

 

Once the best model had been identified, we used the model parameter estimates to 
simulate future population growth using the R code included in Appendix C (R Code: Fitting 
population growth models and projecting future Sonoran pronghorn viability), modified for our 
dataset.  We predicted the probability of reaching an extinction threshold of fewer than 50 males 
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at 30 years in the future.  When the best model included an environmental covariate, we held that 
covariate constant at current levels for future projections.  For example, we assumed that the 
amount of grassland cover in the area will not substantially change from current levels in the 
next 30 years.   

To evaluate the relative importance of individual leks to the persistence of the YTC 
population, we estimated the probability of extinction of the YTC population for four scenarios:  
the existing situation in which all leks remain active, and three scenarios in which individual leks 
with strong protection measures are lost.  We modified our dataset to sequentially remove 
population estimates and amount of habitat for each of the leks with highest levels of protection 
(Lmumma, Range 5, and Range 10Z leks).  We fit the best population growth model for the YTC 
population, which included a habitat covariate, then used its parameter estimates to project 
probability of extinction for YTC sage-grouse under each scenario.  For this analysis we 
included population abundance data from 1989-2006 because not all leks were monitored prior 
to 1989.   

Findings 
Reconstructed estimates of population abundance (represented by minimum number of 

males at leks) showed an overall declining trend from 1972-2006 (Figure 13). 
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Figure 13.  Reconstructed population estimate for Yakima Training Center greater sage-grouse, 
1972-2006. 
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There was little evidence for density dependence in the YTC sage-grouse population 
(Figure 14).  Exponential population growth models were better supported than those 
incorporating density dependence (Table 3).  The 2 best-supported models were exponential 
growth with area of grassland cover and exponential growth with Palmer Drought Severity Index 
score.   
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Figure 14.  Pattern of density dependence in the Yakima Training Center greater sage-grouse 
population 1972-2006. 

 

 

Population projections using parameter estimates from these models yielded similar 
probabilities of persistence.  Overall, the probability of the YTC population reaching an 
extinction threshold of less than 50 lekking males within 30 years was 82% under the model with 
grassland area (Figure 15) and 75% under the model with drought index.  The probability of the 
YTC population getting above 100 lekking males within 30 years was 9% and 12%, respectively. 
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Table 3.  Candidate set of exponential and density-dependent population growth models with 
environmental covariates.   Models were evaluated based on Akaike’s information criterion 
corrected for small sample size (AICc).  K is the number of estimable parameters in the model, 
ΔAICc is the difference in AICc between the current model and the best model, and wi is the 
Akaike weight indicating relative support for the model.  Twenty population growth models were 
considered, and those with negligible support (ΔAICc > 6) are not listed.  Environmental 
covariates are described in Table 2. 

Model Statistic 
Model K ΔAICc wi 

EGPE + Grass 3 0.0 0.28 
EGPE + PDSI 3 0.1 0.27 
EGPE + Snow 3 2.4 0.08 
EGPE + Sage 3 2.5 0.08 
Gompertz + Grass 4 4.1 0.04 
EGPE + Snow, Hours<4C 4 4.2 0.03 
EGPE + Sage, Grass 4 4.6 0.03 
Gompertz + PDSI 4 4.9 0.02 
EGPE + DNT, DNP 4 5.4 0.02 
Gompertz + Snow 4 5.4 0.02 
EGPE + MT, MP 4 5.5 0.02 

 

 

0 100 200 300 400 500

0.
00

0
0.
03

5

Final Abundance

P
ro
ba

bi
lit
y 
de

ns
ity

Figure 15.  Probability density of final abundance of sage-grouse 30 years in the future based on 
exponential growth models that included area of grass-dominated communities as a covariate.   
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Extinction probabilities under the exponential growth model with grass as a covariate 
indicate that the probability of the YTC population falling below 50 males within 30 years is 
greatest if either the Lmumma or Range 10Z leks are lost (Figure 16).   
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Figure 16.   Relative contribution to YTC population persistence of active leks with the greatest 
protective measures.   Probability within 30 years of YTC sage-grouse population a) falling 
below 50 lekking males or b) exceeding 100 lekking males. 

 

Implications 
Historically, YTC was dominated by sagebrush shrublands with very little grass cover.  

Our habitat classification showed grasslands increasing dramatically during the 34 year period 
(Figure 17), mostly likely due to a combination of development and wildfires that convert 
shrublands to grasslands dominated by non-native grasses such as cheatgrass (Bromus tectorum).  
Because population growth rates in YTC sage-grouse were negatively correlated with area of 
grassland (Figure 18), our results underscore the importance of preventing wildfires and 
protecting native shrublands from development in designing management programs to averting 
further declines in sage-grouse populations.  Managers at YTC can use this information to design 
and implement appropriate protection measures for sage-grouse leks, nesting, brood-rearing, and 
wintering areas.    Population growth rates were positively correlated with drought severity 
scores (Figure 19), suggesting that population growth is greater in years with more soil moisture 
and precipitation.  Although drought and other climate variables are beyond the control of 
military managers, these results have implications for the persistence of sage-grouse as climate 
change is predicted to alter precipitation and temperature patterns in the Columbia Basin. 
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Figure 17.  Changes in area of grass-dominated communities (km2) in and near Yakima Training 
Range, Washington, 1972-2006.  Values for 1972, 1982, 1992, and 2006 (diamonds) were 
estimated from object-oriented classification of LANDSAT images from those years.  All other 
years (circles) were interpolated using the assumption of a constant annual change within each 
interval. 
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Figure 18.  Relationship between area of grass-dominated communities (km2) and population 
growth rate for the Yakima sage-grouse population, 1972-2006. 
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Figure 19.  Relationship between average spring (March-May) Palmer Drought Severity Index 
score and population growth rate for the Yakima sage-grouse population, 1972-2006.  Negative 
PDI scores indicate drought conditions.  
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PART 3:  MANAGING MULTIPLE POPULATIONS: SENSITIVITY 
ANALYSIS OF METAPOPULATION MODELS 

 

Background 
The fact that many listed species occur in spatially sub-divided populations (i.e., a 

metapopulation) suggests that, when sufficient data exist for parameterization, a viability model 
capable of capturing metapopulation processes and structures will offer the greatest flexibility for 
determining the effects of management actions on species’ viability.  Furthermore, endangered 
species occupying military installations usually represent only a fraction of the entire population.  
Therefore, when evaluating the effects of management and/or training on DoD installations, 
there is often the need to determine the relative effect of site-specific management/training 
actions on overall persistence and how these effects change under varying assumptions of 
metapopulation structures and processes.  Because of the significance of this question for 
management of listed species occupying military installations, we initiated research to develop 
the necessary methods and tools for quantifying the importance, in terms of species viability, of 
various components (e.g., characteristics of subpopulations) within a metapopulation viability 
model.  We applied these tools to evaluate and inform an innovative management approach 
initiated by the Department of Defense (DoD), the Recovery Credit System for golden-cheeked 
warblers on Fort Hood. 

Critical to determining the effects that various components within a stochastic 
metapopulation (SMP) model will have on overall viability are methods for determining the 
relationship between changes in model components and changes in metapopulation viability.  
Sensitivity analysis offers a direct avenue for quantifying these relationships by assessing how 
the output from a given model responds to changes in its inputs (Saltelli et al. 2000).  Sensitivity 
analysis includes a wide range of methods that can be grouped into 2 general approaches: local 
sensitivity analysis and global sensitivity analysis (Saltelli et al. 1999).  In local sensitivity 
analysis, model parameters are varied one at a time by a fixed amount while others are held to 
their original (i.e., best estimate) value.  Local sensitivity to a parameter is measured by relating 
changes in the model output to the change in the parameter (sometimes normalized by the 
original value or standard deviation).  Local sensitivity analysis has seen widespread use and 
because sensitivity values can usually be derived analytically through the use of partial 
derivatives, implementation is often straightforward.  However, local measures of sensitivity can 
suffer when changes in parameters cause non-linear responses in the model output, when 
parameter uncertainty is not sufficiently characterized by a fixed change in the original value, 
when it is realistic to consider simultaneous changes in other model parameters, or when 
parameters interact.  Many of these problems can be alleviated by employing a global approach 
to sensitivity analysis. 

Global sensitivity analysis differs from local sensitivity analysis in two important ways.  
First, the full range of possible values for a parameter is explored to determine its effect on 
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model output.  Second, the effect of the focal parameter on model output is averaged over 
possible variations of other model parameters.  Because of the difficulty in relating model output 
to simultaneously varying and interacting inputs, several methods have been developed for 
global sensitivity analysis (Saltelli et al. 2000).  However, most methods of global sensitivity 
analysis consist of the following steps: 

1. The possible values for each of the j input parameters in a model are characterized by a 
probability (density) function Dj.  Often these distributions are chosen to reflect the 
uncertainty in the parameter estimates but, depending on the goal of the sensitivity 
analysis, they may reflect natural variation or uncertainty related to the effects of 
management actions. 

2. Repeated samples are selected from each distribution and these values are used as inputs 
for model evaluation.  A unique model output is calculated for each of the replicate input 
samples. 

3. The variation in model output caused by the varying inputs is related to the distribution 
Dj of each input parameter. 

Some of the more prominent methods for global sensitivity analysis include regression-
based approaches utilizing standardized partial regression coefficients and partial correlations as 
measures of sensitivity (Saltelli et al. 2000), the method of Sobol’ (1993), and the extended 
Fourier amplitude sensitivity test (extended FAST; Saltelli et al. 1999).  Sobol’ indices and those 
derived from extended FAST are considered ‘model independent’ in that they do not rely on 
linear or near-linear relationships between the model outputs and the input parameters.  
Additionally, these methods allow the variance in the output attributable to variation in input 
parameters to be decomposed into first order effects as well as higher order effects caused by 
interactions among model parameters.  Total effect indices are calculated by summing the first 
order effects with each additional higher order effect.  Thus, they allow for the importance of 
interactions among model parameters to be quantified in relation to model output. 

Using sensitivity analysis to inform conservation decisions based on population 
projection models has become increasingly popular and sophisticated.  One of its earliest uses 
was in evaluating life-history characteristics of California condors that make the species 
particularly vulnerable to extinction (Mertz 1971).  This study used manual perturbation, a form 
of local sensitivity analysis, to change vital rates and evaluated the effect these changes had on 
the likelihood of the population’s persistence.  Manual perturbation continues to be a popular 
method for conducting a sensitivity analysis on PVA models.  However, several alternative 
approaches (see Mills and Lindberg 2002 for a review) have been developed including analytical 
sensitivity and elasticity analysis (Goodman 1971, Caswell 2001); life-table response 
experiments (Caswell 1989); and regression-based approaches (McCarthy et al. 1996, Wisdom 
and Mills 1997, Wisdom et al. 2000). 
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Methods 
Generally, methods for conducting sensitivity analyses of PVA models have been 

developed for single population models.  Although some of these methods could be applied to 
metapopulation viability models, upon initiation of our research it was unclear if and how 
researchers were performing sensitivity analyses on metapopulation viability models.  Therefore, 
to determine the state of affairs in conducting a sensitivity analysis of SMP models, we surveyed 
the literature for studies in which a sensitivity analysis was conducted on metapopulation 
viability models.  As part of this survey, we recorded the method used; whether the method was 
local or global; the stated purpose of the sensitivity analysis; the response variable; and which 
parameters were determined to be most sensitive. We also noted if there was publicly available 
software for conducting the sensitivity analysis. 

Results of this survey showed that 87% (33 of 38 studies) of the sensitivity analyses on 
metapopulation viability models were considered “local” in that parameters were manually 
perturbed by a fixed amount around the nominal value.  Additionally, for all but one of these 33 
studies, parameters were changed one at a time with all other parameters held constant at their 
nominal value.  The five studies that employed a “global” approach relied on linear models to 
relate changes in parameters to changes in metapopulation viability.  None of the studies we 
examined used the more recent model independent methods of Sobol’ and extended FAST.  
While these model independent methods are a relatively recent addition to the suite of methods 
for conducting a sensitivity analysis, they are beginning to see use in other areas of ecological 
research (e.g., Fieberg and Jenkins 2005).  The paucity of studies using global sensitivity 
analysis on SMP models is likely due to the lack of software for conducting these analyses 
(Naujokaitis-Lewis et al. 2009).  Most of the studies in our survey (26 of 38) used either 
RAMAS (Akçakaya 2005) or VORTEX (Lacy et al. 2007) to model metapopulation viability and 
neither of these popular programs contain the functionality for conducting a global sensitivity 
analysis.  We note that during this project, a similar review was published by Naujokaitis-Lewis 
et al. (2009) which arrived at similar conclusions. 

Because we consider the ability to conduct a global sensitivity analysis of SMP models 
paramount to meeting the objectives of our research, we developed new software (MetaPVA) to 
meet these needs.  The usefulness of this software depended on two linked components (1) a 
demographically-based stochastic metapopulation model and (2) functionality for conducting 
several of the most popular methods of sensitivity analysis.  The structure of the SMP model was 
guided by a review of well-established articles on topics such as single-population viability 
analysis (e.g., Leigh 1981, Dennis et al. 1991, Foley 1997), island-biogeography (e.g., 
MacArthur and Wilson 1967, Brown and Kodric-Brown 1977), source-sink dynamics (e.g., 
Pulliam 1988), fragmentation (e.g., Stacey and Taper 1992), and metapopulation ecology (e.g., 
Quinn and Hastings 1987, Harrison and Quinn 1989, Gilpin 1990).  From this review, the 
following parameters were suspected to have an appreciable effect on metapopulation dynamics: 
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(1) number of populations within the metapopulation, (2) initial size (i.e., number of individuals) 
of each population, (3) within-population dynamics (i.e., stochasticity, survival, fecundity, 
carrying capacity and form of density dependence), (4) correlations of vital rates among 
populations, and (5) movement rates among populations.  The SMP model portrayed in 
MetaPVA contains functionality to incorporate all of these processes (Table 4).  The model is an 
age/stage-matrix based population projection model that incorporates the effects of species- and 
age-specific parameters such as mean vital rates (i.e., fecundity and survival), variation in vital 
rates, and density dependence as well as effects due to metapopulation dynamics (i.e., number of 
populations, dispersal among populations, and correlations in vital rates among populations. 
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Table 4.  Available features in MetaPVA for modeling metapopulation viability. 

 

Features     Population-specific  Age/Stage-specific 

Life history characteristics 

Stage matrices 

mean survival     X    X 

mean fecundity     X    X 

Types of density dependence    

none      X    X 

ceiling      X    X 

Ricker      X    X 

Beaverton-Holt     X    X 

Allee effects     X     

trend in carrying capacity   X    X 

Stochasticity 

Demographic 

fecundity (Poisson process)   NA    NA  

survival   (binomial process)   NA    NA 

dispersal  (binomial process)   NA    NA 

Temporal 

survival rate (normal or lognormal)  X    X 

fecundity  (normal or lognormal)  X    X  

carrying capacity (normal)   X 

dispersal (normal)    X  

Population parameters  

spatial location of populations   X 

initial abundance     X    X 

extinction threshold    X 

correlations in vital rates    X 

dispersal rates     X    X 
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Incorporating functionality for sensitivity analyses in MetaPVA was challenging.  Because 
of the complexity, both in the structure of the model and the number of possible parameters, we 
had to develop a flexible user-interface that allowed users to calculate sensitivity metrics for 
model-specific parameters (e.g., juvenile fecundity of a specific subpopulation) while at the same 
time allowing users to group related parameters (e.g., survival of all stages and all 
subpopulations) for a single sensitivity metric.  We settled on an approach similar to that used in 
program MARK (White and Burnham 1999) where a parameter index matrix (PIM) is used.  
Model parameters with unique indices are treated as separate parameters while those with the 
same index are grouped and viewed as a single parameter in the subsequent sensitivity analysis 
(Figure 20).   Sensitivity analyses are performed by linking MetaPVA with the ‘Sensitivity’ 
package (Pujol 2007) for program R (free statistical and graphical software).  Sensitivity 
methods include a “direct” method that simply provides model outputs for randomly generated 
replicate inputs, Morris’s (1991) one at a time (OAT) screening method, logistic regression 
(McCarthy et al. 1996), regression analysis utilizing standardized partial regression coefficients 
and partial correlation coefficients (Saltelli et al. 2000), and extended FAST (Saltelli et al. 1999) 
(Figure 21). 

 
 

Figure 20.  User-interface of MetaPVA used to specify unique mean fecundity parameters for 
subsequent sensitivity analysis.  A similar interface is used for other model parameters. 
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Figure 21.  User-interface of MetaPVA for selecting the type of sensitivity analysis to perform 
on the metapopulation viability model.  
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MetaPVA completes each step required for conducting a sensitivity analysis of metapopulation 
viability models including a user-interface written in Visual Basic, calculation of sensitivity 
indices in R, and passing output from the sensitivity analysis back to the user-interface.  The 
SMP model and options included in MetaPVA are similar to those contained in the proprietary 
software RAMAS Metapop (Akçakaya 2005).  However, because MetaPVA was developed as a 
part of this project, a similar version will be made available to DoD for conducting 
metapopulation viability analyses.  One key feature of this program is the ability to call and 
execute functions in R.  This feature allows MetaPVA to utilize robust statistical procedures for 
generating random correlated deviates from a variety of distributions as well as the ability to 
include R packages (i.e. the sensitivity package). 
 

Results and Discussion.  Management of the Golden-cheeked Warbler Metapopulation, 
Fort Hood 

Due to the challenges of managing species listed under the Endangered Species Act on 
private lands, much of the responsibility for conservation and recovery has traditionally been 
placed on public lands owned by the U. S. federal government and the various states.  However, 
listed species rarely occur solely on public lands.  Approximately two-thirds of listed species 
have populations on private lands (Groves et al. 2000), and as many as 37% depend entirely on 
non-federal lands for their habitat (GAO 1995).  Moreover, populations of listed species that 
occur on individual tracts of public land usually represent only a fraction of a metapopulation, 
regional population, or species range.  Thus, for the majority of these species, effective recovery 
strategies must involve management of both public and private lands (Wilcove and Lee 2004).   

Despite the importance of private lands for the recovery and conservation of listed 
species, considerable conflict has arisen due to concerns about private property rights and the 
distribution of conservation costs (Bean and Wilcove 1997, Doremus 2003).  Therefore, a 
growing number of programs seek to alleviate these conflicts by replacing regulatory measures 
with incentive-based mechanisms (Doremus 2003, Wilcove and Lee 2004).  Such conservation 
incentive programs are designed to promote stewardship of endangered species habitat through 
voluntary conservation activities by landowners who are rewarded, financially or otherwise, for 
their participation (Bonnie 1999, Doremus 2003, Wilcove and Lee 2004).  Conservation 
incentives range from Safe Harbor agreements (USFWS 1999) to landowner conservation 
assistance programs to market-based systems.  Market-based incentive programs such as 
conservation banks can provide financial gain to landowners willing to conserve habitat and then 
sell “credits” to developers seeking mitigation (Wilcove and Lee 2004, Bean 2006).  Recently, a 
market-based incentive program for the golden-cheeked warbler (Dendroica chrysoparia) has 
been implemented as a “proof of concept” in conjunction with habitat protection on Fort Hood, 
an 87,890 ha Army training post in central Texas  (Figure 22). 
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Breeding 
Range Fort Hood 

   
Figure 22.  Location of Fort Hood in relation to golden-cheeked warbler breeding range (blue) in 
central Texas. 
 
 

The golden-cheeked warbler is a neotropical migrant songbird that breeds in mature, 
closed-canopy woodlands composed primarily of Ashe juniper (Juniperus ashei) and oak 
(Quercus sp.) (Pulich 1976, Ladd and Gass 1999).  Breeding range is confined to fewer than 36 
counties in central Texas (USFWS 1996).  Historically (pre-European settlement), breeding 
habitat was probably relegated to fragmented patches along streams and rocky limestone 
outcrops where oak-juniper woodlands could reach maturity (Kroll 1980).  However, clearing of 
Ashe juniper for urban expansion, agriculture, and commercial harvest has further reduced and 
fragmented available breeding habitat resulting in the golden-cheeked warbler being listed as 
Endangered in 1990 (USFWS 1990).  Protection of existing breeding habitat has been cited as an 
important component of golden-cheeked warbler recovery (USFWS 1992).  Effective habitat 
management on both public and private lands is particularly important for the golden-cheeked 
warbler as most breeding habitat occurs on privately owned land (USFWS and Environmental 
Defense 2000). 

Fort Hood contains the largest breeding population of golden-cheeked warblers under a 
single landowner (USFWS 1992).  Recent population estimates on Fort Hood range from 2,901 
to 6,040 territorial males (Cornelius et al. 2007) and Anders and Dearborne (2004) suggested a 
stable or slightly increasing population trend since 1992.  However, despite optimistic population 
sizes and trends and the relative security of breeding habitat, a viable population of golden-
cheeked warblers on Fort Hood is not guaranteed.  In addition to the possibility of natural 
catastrophes and increased demands for military training, live munitions will always pose a fire 
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threat to breeding habitat.  In fact, much of Fort Hood’s active management is in response to a 
1996 wildfire that destroyed or damaged ~2,100 ha, approximately 15% of the available 
breeding habitat at that time (Cornelius et al. 2007).  As such, managers at Fort Hood must 
consider the possibility that unintentional loss of habitat on Fort Hood will jeopardize the overall 
viability of golden-cheeked warblers and lead to more stringent training restrictions in the future.  
To guard against this scenario, in 2006 the DoD began a 3-year trial of the Recovery Credit 
System (RCS), which provides Fort Hood with recovery credits for funding conservation of 
golden-cheeked warbler habitat on private lands (USFWS 2007).  Under the RCS, recovery 
credits accumulated by Fort Hood through contracts with private landowners would be used to 
offset unanticipated loss of golden-cheeked warbler habitat within the boundaries of the 
installation.  

Critical to successful implementation of market-based incentive programs such as the 
RCS is the ability to assign a value, in terms of changes to population viability, to both habitat 
loss and potential habitat restoration or protection.  In particular, if a certain amount of habitat is 
lost in one area, how much habitat needs to be restored or protected in another area such that 
there is no change in overall viability?  Applied ecologists have considered the relative 
conservation value of patches differing in size and connectedness since the development of 
island biogeography (MacArthur and Wilson 1967, Brown 1971) and metapopulation theory 
(Hanski and Gilpin 1991).  But despite the recognition that habitat patches vary in their 
contribution to viability, the specifics of any one system may be hard to generalize, suggesting 
that the value of habitat losses and gains should be evaluated quantitatively based on species-
specific models of metapopulation dynamics (Doak and Mills 1994, Bruggeman and Jones 
2008).  We describe an approach for applying sensitivity analysis to a metapopulation projection 
model to evaluate how changes in golden-cheeked warbler breeding habitat, both on and off Fort 
Hood, might affect overall species viability.  Specifically, we sought to answer the following 
questions:  Given the same amount of change in breeding habitat, does the change in some 
patches have a greater effect on overall persistence of the metapopulation than others?  If so, can 
characteristics of a patch (e.g., size or its spatial location) be used to predict how the 
metapopulation will respond to these changes?  

Analytical Approach 
We assessed golden-cheeked warbler viability using a demographically-based 

metapopulation model in which distinct patches of habitat support local breeding populations.  
The model structure and parameters were based on a previous study by Alldredge et al. (2004) 
who assessed the viability of the golden-cheeked warbler metapopulation in central Texas.  
However, to more effectively evaluate the questions for our study, we generalized the number 
and size of populations as well as their spatial arrangement.  Therefore, we modeled 10 
hypothetical populations with sizes, measured as the number of territories supported, ranging 
from 238 to 12,371.  These values correspond to the smallest and largest (i.e., Fort Hood) 
populations modeled by Alldredge et al. (2004).  To investigate the relationship between the 
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spatial location of a population and its importance, we arrayed the populations spatially so as to 
have a mix of sizes and relative distances from Fort Hood (Table 5). 

 
 

Table 5.  Characteristics of 10 hypothetical patches used to investigate the relationship between 
patch importance and patch size or distance from largest patch. 

 

Patch Id Patch Size (K)a Distance from largest patchb 
Pop1 238 1 
Pop2 250 7 
Pop3 300 4 
Pop4 350 2 
Pop5 400 8 
Pop6 550 5 
Pop7 700 3 
Pop8 1000 6 
Pop9 6000 9 
Pop10 (e.g, Fort Hood) 12371 0 
 
a  Patch size is based on a classification of golden-cheeked warbler habitat and corresponds to the 
number of territories a habitat patch can support at ~4.5 ha per territory (i.e., the carrying 
capacity). 
b  Distance units are generic and were chosen to have a mix of sizes and distances from the 
largest patch. 
 
 

We used a stochastic, discrete-time projection model based on stage-specific estimates of 
mean survival (S) and fecundity (F) as well as various assumptions about dispersal among 
populations.  We modeled 3 age classes (i.e., stages) including hatch year (HY), second year 
(SY), and after-second year (ASY).  The model was made stochastic by including temporal 
variation in survival and fecundity where the value of these parameters was randomly drawn 
during each time step (Ft, St) from a log-normal distribution (Akçakaya 2005).  We also modeled 
demographic stochasticity by drawing the actual number of young reproduced per individual 
from a Poisson distribution with mean equal to Ft and the actual number of survivors for each 
time step from a binomial distribution with probability equal to St and number of “trials” equal to 
the number of individuals (Nt).  Because golden-cheeked warblers are territorial during the 
breeding season, we modeled density dependence by incorporating a “ceiling” carrying capacity 
(K).  Thus, populations grew without any density dependence until the population exceeded K at 
which time the population was either truncated to K or the excess individuals became dispersers 
(see Model Scenarios section).  Initial abundances for projecting future population sizes were set 
to 80% of K.  We simulated 2000 replicate population trajectories for 20 years into the future and 

 53



   

used the mean (across replicates) final abundance (MFA) to assess golden-cheeked warbler 
viability. 

Golden-cheeked warbler dispersal is poorly understood (Ladd and Gass 1999).  
Therefore, we included 5 model scenarios that reflected various assumptions of dispersal 
behavior.  Because adults have strong site fidelity, for all scenarios including dispersal, only SY 
individuals (i.e., HY birds that survived and returned to breed the following year) were allowed 
to disperse (Ladd and Gass 1999, Alldredge et al. 2004).  The first scenario, NoD, assumed no 
dispersal between populations.  The second, SymD, assumed 15% symmetric dispersal among 
populations (Alldredge et al. 2004).  For each time step, 15% of the population of SY individuals 
would disperse from each population with emigrants distributed equally among the remaining 9 
populations.  Thus, a particular population would receive Nj*0.0167 immigrants from each of the 
j populations.  Because dispersal may have inherent survival costs, our 3rd scenario included a 
decrease in disperser survival related to distance traveled, SurvD.  This scenario still assumed 
15% dispersal at each time step but the proportion of individuals that survived to immigrate into 
other populations declined with distance from the source population.  Because our distances were 
generic, we simply assumed a linear decline in survival from distance = 0 where survival rate 
was 1 to distance = 9 (i.e., furthest distance modeled) where survival rate was 0.  Thus, a 
particular population would receive Nj*0.0167*(1 - 0.111*Dj) immigrants from each of the j 
populations where Dj is the distance from the jth population.  Our 4th scenario KD was based on 
the idea that SY individuals may be strongly philopatric and only disperse if the source 
population exceeds K.  Therefore, the KD scenario assumed individuals in excess of K become 
dispersers and subsequently emigrate in equal proportion to all other populations in the 
metapopulation.  The 5th scenario, KSurvD, was similar to SurvD in that dispersers from the 
KD scenario experienced a declining survival rate related to the distance from the source 
population. 

There was little information on survival and fecundity for populations other than Fort 
Hood.  Thus, for the previous 5 scenarios, we assumed survival and fecundity were the same for 
each population (Table 6).  However, metapopulation dynamics can be highly sensitive to 
differences in vital rates among populations (Hokit and Branch 2003) and there are several 
reasons why it would be reasonable to assume golden-cheeked warbler reproduction and survival 
would vary with patch area (Robinson et al. 1995, Suorsa et al. 2004).  To accommodate this 
possibility, we included a 6th scenario, KSurvDVitals, in which fecundity and HY survival for 
each population increased linearly with the size of the population (Table 7).  The lower and 
upper limits of these values correspond to the minimum and maximum observed values reported 
in Alldredge et al. (2004). 
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Table 6.  Golden-cheeked warbler mean survival (S) and fecundity (F) based on those reported in 
Alldredge et al. (2004).  Minimum and maximum observed values are in parentheses.   
 
Stagea S Temporal Variance (S) Fb Temporal Variance (F) 
HY 0.40 (0.30, 0.50) 0.058 0 0 
SY 0.57 (0.57, 0.57) 0.010 1.2 (0.8,1.4) 0.024 
ASY 0.57 (0.57, 0.57) 0.010 1.3 (1.1,1.7) 0.006 
 
a  Stages were hatch-year (HY) including birds age 0 to 1 year, second year (SY) including birds 
age 1 to 2 years and after second year (ASY) including birds >2 years old. 
b  Fecundity is the number of HY birds produced per individual SY or ASY bird. 
 
 
 
 
Table 7.  Golden-cheeked warbler mean survival (S) and fecundity (F) for each population  
under scenario KSurvDVitals as described in text. 
 
Patch Id Patch Size (K)a SHY SAHY FHY FAHY 
Pop1 238 0.300 0.570 0.750 1.090 
Pop2 250 0.300 0.570 0.751 1.091 
Pop3 300 0.301 0.570 0.754 1.093 
Pop4 350 0.302 0.570 0.756 1.095 
Pop5 400 0.303 0.570 0.759 1.097 
Pop6 550 0.305 0.570 0.768 1.104 
Pop7 700 0.308 0.570 0.776 1.111 
Pop8 1000 0.313 0.570 0.793 1.125 
Pop9 6000 0.395 0.570 1.078 1.356 
Pop10 12371 0.500 0.570 1.440 1.650 
 
 

     

a  Patch size is based on a classification of golden-cheeked warbler habitat and corresponds to the 
number of territories a habitat patch can support at ~4.5 ha per territory (i.e., the carrying 
capacity). 
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Conceptually, we wanted to determine whether changing the size of particular patches by 
the same amount resulted in a greater effect on overall viability than others.  Thus, we 
determined how much the mean final abundance (MFA) of warblers changed in response to 
changes in a particular population’s size (K), reflecting potential loss or gain of habitat.  To 
quantify this relationship, we performed a sensitivity analysis (Saltelli et al. 2000) of the 
metapopulation projection model.  We drew 500 sets of random carrying capacities Kj for each 
of the j = 1 to 10 populations from uniform distributions that ranged +/- 200 of the population’s 
original K.  Thus, each population regardless of its original size was varied by the same amount.  
For each of the 500 sets of carrying capacities, the metapopulation projection model was run and 
MFA was recorded.  Changes in MFA were related to changes in each population’s carrying 
capacity (K j) via linear regression.  We used regression coefficients to quantify a particular 
patch’s leverage (Lj) on metapopulation viability, measured as the expected change in MFA due 
to changing the size of a particular patch (i.e., Kj) by one unit, 

j
j

MFAL
K

Δ
=

Δ
. 

 

We related 2 patch characteristics, original patch size (Kj) and distance (DLj) from the 
largest patch (i.e., Fort Hood), to that patch’s leverage (Lj).  We used these characteristics 
because they are commonly used to value patches for conservation credits (USFWS 2007) and if 
quantifiable relationships exist, they could be used to inform future applications of RCS.  
Specifically, we modeled Lj, as a linear function of Kj and DLj.  Preliminary analyses suggested 
an exponential relationship between Lj and Kj so all models were fit using the natural logarithm 
of Kj.  The global model was 

0 1 2 3ln lnj j j jL K DL Kβ β β β⎡ ⎤ ⎡ ⎤= + + + ×⎣ ⎦ ⎣ ⎦ j  DL

All possible subsets where parameters   1β , 2β , or 3β  or   equaled 0 were fit as competing 
models except for the aspatial scenarios (i.e., NoD, SymD, KD) for which we only allowed for 
the effect of Kj.  To identify important characteristics for predicting patch leverage, we used 
Akaike’s Information Criteria corrected for small sample bias (AICc) to rank competing models 
based on their predictive ability (Burnham and Anderson 2002). 

Metapopulation projections and sensitivity analyses were performed using a program 
written in Visual Basic with calls to R (http://www.r-project.org/) for some statistical procedures. 
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Findings 
 Overall metapopulation viability differed substantially among the 6 scenarios we 
modeled (Table 8).  Notably, metapopulation viability was lower with 15% dispersal versus no 
dispersal whereas viability was higher when dispersal was density dependent (i.e., only 
individuals exceeding carrying capacity became dispersers).  Metapopulation viability was 
greatest with density dependent dispersal and vital rates related to patch size (i.e., scenario 
KSurvDVitals). 
 
Table 8.  Golden-cheeked warbler metapopulation viabilitya.  Total initial abundance for the 
metapopulation was 19943. 
 
Scenariob MFA  
NoD 11182  
SymD 9870  
SurvD 7884  
KD 13037  
KSurvD 12212  
KSurvDVitals 16879  
 
a  Viability was measured by mean final abundance (MFA). 
b  Scenarios reflect various assumptions of dispersal and patch-specific vital rates.  
 

Plots of MFA versus changes in each population’s carrying capacity (K j) suggested a 
linear relationship (Figure 23).  Thus, regression coefficients (Lj) provided a reasonable measure 
of the expected change in MFA due to changing the size of a particular population.  Among the 6 
scenarios we modeled, there was no consistent relationship between the leverage of a particular 
patch and the characteristics of that patch.  Instead, both the characteristic (i.e., patch size versus 
distance from the largest population) that best predicted patch leverage, as well as the magnitude 
of the relationship, changed under different model scenarios (Tables 9 and 10).  With no 
dispersal (i.e., NoD), there was little evidence for a relationship between patch leverage and 
patch size or distance from the largest patch suggesting that changes in the size of a particular 
patch had the same effect on MFA regardless of the characteristics of the patch.  For the 4 
scenarios based on constant vital rates and dispersal among populations (i.e., SymD, SurvD, 
KD, and KSurvD), patch size was the best predictor of leverage and distance from the largest 
patch was a poor predictor (Figure 24, Table 9).  For these scenarios, as original patch size 
increased, patch leverage decreased.  This indicates that given the same amount of habitat loss or 
gain, changes to smaller patches have a greater effect on overall viability than larger patches.  
Conversely, when vital rates varied among populations (KSurvDVitals), distance from the 
largest patch was the best predictor of leverage and patch size was weakly related (Figure 25, 
Table 9).  For this scenario, as distance from the largest patch increased, patch leverage 
decreased. 
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Figure 23.  Example of the leverage metric (L4 = 0.81) calculated for Population 4 under the 
KSurvD scenario.  Leverage metrics were used to measure the expected change in mean final 
abundance (MFA) due to changing the size of a particular population (K). 
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Figure 24.  Relationships between patch leverage (L) and original patch size (K) for 4 dispersal 
scenarios (SymD, SurvD, KD, KSurvD) described in the text. 
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Figure 25.  Relationships between patch leverage (L) and distance from the largest patch for the 
KSurvDVitals scenario described in the text. 
 
 
 
Table 9.  Model selection relating patch characteristicsa to patch sensitivity. 
 

Scenariob Model # Parameters r^2 AICc Delta AICc 
NoD null 2 NA -16.4 0 
NoD ln(k) 3 0.08 -12.9 3.4 
SymD ln(k) 3 0.87 -5.1 0 
SymD null 2 NA 11.3 16.5 
SurvD ln(k) 3 0.91 -11.0 0 
SurvD null 2 NA 9.0 20.0 
KD ln(k) 3 0.59 0.8 0 
KD null 2 NA 5.4 4.5 
KSurvD ln(k) 3 0.52 -5.6 0 
KSurvD null 2 NA -2.6 3.0 
KSurvD ln(k) + dist 4 0.54 -0.1 5.5 
KSurvD dist 3 0.02 1.5 7.1 
KSurvD ln(k) + dist + dist*ln(k) 5 0.58 8.1 13.6 
KSurvDVitals dist 3 0.50 -2.3 0 
KSurvDVitals null 2 NA 0.3 2.7 
KSurvDVitals ln(k) + dist 4 0.51 3.5 5.8 
KSurvDVitals ln(k) 3 0.02 4.5 6.8 
KSurvDVitals ln(k) + dist + dist*ln(k) 5 0.53 12.0 14.3 
 

a  Patch characteristics were the natural logarithm of patch carrying capacity (ln(k)) and distance 
from the largest patch (dist).   
b  Scenarios reflect various assumptions of dispersal and patch-specific vital rates as described in 
text.  
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Table 10.  Parameter estimates (with standard errors in parentheses) of information theoretic (IT) 
best model(s)a relating patch leverage to patch characteristicsb. 
 
Scenarioc IT Best Model Intercept ln(k) dist 
NoD null 0.463 (0.027) NA NA 
SymD ln(k) 2.292 (0.210) -0.232 (0.031) NA 
KD ln(k) 1.745 (0.283) -0.141 (0.042) NA 
SurvD ln(k) 2.039 (0.157) -0.211 (0.023) NA 
KSurvD ln(k) 1.235 (0.206) -0.089 (0.030) NA 
KSurvDVitals dist 0.815 (0.086) NA -0.046 (0.016) 

 
a  Models presented are those with the lowest AICc score. 
b  Patch characteristics were the natural logarithm of carrying capacity (ln(k)) and distance from 
the largest patch (dist).   
c  Scenarios reflect various assumptions of dispersal and patch-specific vital rates as described in 
text.  
 
 
Implications 

Conservation programs designed to offset unintentional loss of habitat on Fort Hood need 
to objectively value the importance of changes to off-post patches relative to changes in habitat 
on Fort Hood.  This situation is not unique to Fort Hood.  Indeed, many regulatory provisions 
require a means by which detrimental changes in ecological resources can be mitigated at the 
appropriate level by off-site compensation (Bruggeman and Jones 2008).  We showed how 
sensitivity analysis of a stochastic population projection model could be used to quantify how 
changes in occupied habitat affect metapopulation viability.  Thus, the importance of changes to 
individual habitat patches could be quantified in a rigorous and transparent analysis.  For 
example, to determine how much habitat would need to be added or conserved in patch A to 
offset 50 lost territories in patch B, one would use the following 

ˆ
ˆ

B
A B

A

L
L

Δ = Δ ×  

If we assume dispersal scenario KD, that patch B initially held 250 territories and patch A held 
6000 then,  

( )
( )

1.74 0.14 ln 250
50 93

1.74 0.14 ln 6000A

− ×
Δ = × =

− ×
. 

So, enough habitat to accommodate approximately 93 territories would need to be added or 
conserved in patch A to offset the loss of 50 territories in patch B.  This example emphasizes our 
counterintuitive result that under many of the most realistic scenarios (i.e., SymD, SurvD, KD, 
and KSurvD), smaller patches were expected to have higher leverage than larger patches where 
a unit change in K of these smaller patches leads to a larger change in mean final population size 
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in the future.  This is important because in opposition to the dogma that “bigger is better,” it 
suggests that given the same amount of habitat protection or restoration, it is better for future 
viability that these changes occur to smaller instead of larger patches. 

By relating the characteristics of patches within the golden-cheeked warbler 
metapopulation to their importance, we investigated whether patch size or distance from the 
largest patch could be used to predict how influential changes to a particular patch would be to 
overall viability.  However, we found it impossible to produce general guidelines for valuing 
habitat patches even within the limited set of scenarios we investigated.  Without dispersal, 
changes to populations had an equivalent effect on overall viability.  With dispersal, size of the 
patch was helpful in predicting patch leverage only when mean vital rates were the same among 
populations; otherwise distance from the largest patch was the best predictor.  Based on our 
results, we suggest it would be dangerous to rely on general guidelines for valuing changes to 
habitat patches within a metapopulation.  Instead, we recommend patches be valued based on 
changes to overall viability that are estimated via an explicit model of metapopulation dynamics. 

 Although our analysis did not produce consistent recommendations, it was useful in 
identifying critical model assumptions and parameters that should be targeted for future research.  
In particular, opposing conclusions of whether patch size or distance from the largest patch were 
important characteristics points to the need for better information on how habitat patches within 
the golden-cheeked warbler metapopulation are connected via dispersal and how mean survival 
and reproductive rates vary among patches.  Additionally, we attempted to include several 
realistic assumptions about the golden-cheeked warbler metapopulation but, due to insufficient 
empirical data, recognize that our analyses did not cover all possibilities related to the spatial 
arrangement of habitat patches, patch-specific vital rates, spatial correlations in dynamics among 
populations, or effects of habitat fragmentation (i.e., edge effects; Murcia 1995).  Despite these 
limitations, our analyses emphasize the fact that details matter and we stress the need to continue 
to refine and improve model parameters and assumptions to match the actual golden-cheeked 
warbler metapopulation.  This can be accomplished by placing uncertainties in model structure, 
assumptions and parameter values within an adaptive management/research context (Bakker and 
Doak 2009).  By doing so, model predictions can be evaluated with ongoing monitoring data and 
key components of the model (e.g., dispersal, patch-specific vital rates, etc.) can be targeted for 
future research (MacKenzie 2009). 
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PART 4:  INCORPORATING MULTIPLE SOURCES OF UNCERTAINTY 
INTO POPULATION VIABILITY MODELS 

Background 
Population viability analysis (PVA) is “the application of data and models to estimate 

probabilities that a population will persist for specified times into the future” (Mills 2007:254) 
and is an important tool for assessing extinction risk and evaluating management options for 
species of conservation concern (Morris and Doak 2002).  However, by their very nature (i.e., 
predicting the future), PVA models must accommodate some level of uncertainty.  In fact, 
uncertainty in predictions (e.g., future population abundance) arise from 5 main sources: (1) the 
effects of future management actions, (2) choice of an appropriate simplified model structure to 
characterize complex ecological processes (i.e., model selection uncertainty), (3) unexplained or 
residual process variation in population dynamics not accounted for in the model, (4) uncertainty 
in the future values of environmental covariates (e.g., weather) that are included in the model,  
and (5) limited empirical data from which model parameters are estimated (i.e., estimation or 
sampling error).  While this is not an exhaustive list (e.g., note the absence of demographic 
stochasticity and measurement error of empirical data), these major sources of variation translate 
to considerable differences in model predictions.  For PVA to be informative, it is critical to be 
able to quantify the magnitude of uncertainty in model predictions and subsequently be able to 
assess whether the effects of management actions are significant enough to detect a change in 
viability despite this uncertainty.  Concomitantly, if model components causing the uncertainty 
can be identified and prioritized, future research can target the components that are most likely to 
reduce overall prediction uncertainty. 
 
Methods 

We developed an approach, and accompanying computer code, to more completely 
quantify prediction uncertainty in PVA models.  A similar framework was recently described by 
Bakker et al. (2009) for demographic-based models.  Here we develop an approach for viability 
models based on time-series of abundance data (e.g., Dennis et al. 1991, Dennis and Otten 2000, 
Garton et al. 2011).  The approach is based on uncertainty analysis (Saltelli et al. 2000) in which 
important components of prediction uncertainty are identified within a population viability 
model, empirical data are used to develop probabilistic distributions for uncertain inputs, and 
simulations are used to propagate these uncertainties and evaluate their influence on model 
predictions.  We describe and demonstrate the approach with Sonoran pronghorn (Antilocapra 
americana sonoriensis), an endangered subspecies of North American pronghorn that is of great 
conservation and management concern in southern Arizona and to Barry M. Goldwater Range 
(BMGR).  Our choice of Sonoran pronghorn was influenced by 4 motivations:  (1) There is an 
urgent need to update a previous PVA done by Hosack et al. (2002), particularly related to 
evaluating the benefit of the captive breeding program; (2) the U. S. Fish and Wildlife Service 
(USFWS) has proposed to reestablish a new population within BMGR to aid in the recovery of 
wild Sonoran pronghorn; (3) there are now sufficient empirical data to fit population growth 
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models and quantify uncertainty in model inputs; and (4) the relatively complex dynamics 
among the captive population, current wild population and proposed reestablishment of a 2nd 
wild population allow for the construction of a general model/approach that can be transferred to 
other species of concern to the Department of Defense (DoD). 

Results and Discussion: Quantifying Prediction Uncertainty in Population Viability 
Analysis of Sonoran Pronghorn at Barry M. Goldwater Range 
 

Historically, Sonoran pronghorn were relatively common in wide alluvial valleys of the 
Sonoran Desert (USFWS 2009).  Widespread decline began in the mid- to late-1800s due to 
competition with domestic livestock, fencing, and hunting which has reduced the current 
distribution to about 7.6 % of their original range (USFWS 2009).  Sonoran pronghorn were 
federally listed as endangered in 1967 under the Endangered Species Preservation Act of 1966 
and subsequently grandfathered in under the Endangered Species Act of 1973 (USFWS 1998).  
Most of the current U. S. population resides on the central portion of BMGR (BMGR-East) west 
of Arizona State Route 85 (SR 85) and adjoining Cabeza Prieta National Wildlife Refuge 
(CPNWR; Figure 26). 
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Figure 26.  Location of current range of wild Sonoran pronghorn, Barry M. Goldwater Range, 
Cabeza Prieta National Wildlife Refuge, area of proposed reestablishment, and weather stations 
used for quantifying historic precipitation.  Source: Draft Environmental Assessment for 
Reestablishment of Sonoran pronghorn, USFWS 2009. 

 63



   

 
In response to concern over the viability of Sonoran pronghorn, Hosack et al. (2002) 

conducted a PVA to determine extinction risks, identify model parameters whose estimation 
uncertainty had the greatest influence on estimates of viability, and evaluate changes in viability 
due to potential management actions.  Viability was assessed using an individual-based, 
stochastic projection model (i.e., Vortex Version 7 software; Lacy et al. 1993) based on estimates 
of age at first reproduction for males and females, average fawn and adult survival, age-specific 
fecundity, temporal variation in survival and fecundity, impact of inbreeding depression, and 
maximum number of individuals the habitat can support (i.e., ceiling carrying capacity).  In 
addition to these parameters, the model included effects of catastrophes and harvest on survival.  
The PVA of Hosack et al. (2002) was helpful in answering many of the outstanding questions 
that prompted their study.  However, there are several reasons why a new PVA would be 
beneficial. 

1. Estimates of key parameters and their temporal variation were acquired before the severe 
drought of 2002 which resulted in a historic low in the population size (i.e., and estimated 
21 individuals). 

2. In response to the small size of the wild population following this drought, a captive 
breeding pen was established at CPNWR which has subsequently been maintained and 
serves as a source for releases into the wild population. 

3. The effect of supplementing the wild population from a captive population was assessed 
only in regard to inbreeding depression.  The benefit of having a captive population to 
supplement the abundance of the wild population and buffer against stochastic lows in 
population size was not evaluated. 

4. There are now sufficient empirical data (i.e., annual and bi-annual estimates of 
abundance) of both the wild and captive population to conduct a PVA based on 
alternative models of population growth (i.e., Dennis et al. 1991, Dennis and Otten 2000).  
This approach offers several advantages over a demographic-based PVA, including: (1) 
far fewer model parameters need to be estimated which can dramatically reduce the 
uncertainty in model predictions; (2) the ability to use previous abundance data to 
estimate the effects of density dependence and environmental drivers of population 
growth (e.g., precipitation) and incorporate these effects into the PVA; and (3) all 
parameters in the projection model, including their mean values, temporal variation, and 
estimation error are acquired from empirical data (i.e., time-series of past abundances and 
recorded precipitation).   

5. In 2009, the USFWS proposed to establish additional populations within their historic 
range, including construction of an additional captive pen at Kofa National Wildlife 
Refuge (KNWR).  The potential benefits of this proposal can be evaluated using 
population growth models mentioned above. 

6. Improvements in techniques and the creation of computer programs with which to  
conduct an uncertainty/sensitivity analysis (Scott et al. 2010) allow for a more 
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comprehensive treatment of uncertainty in model predictions as well, as a way to identify 
future research needs to reduce uncertainty. 
 
With these considerations in mind, we conducted a PVA of Sonoran pronghorn to meet 

the following objectives: 
1. Make full use of past abundance data from both the wild and captive populations to 

model Sonoran pronghorn viability, including the potential effects of density dependence 
and key environmental drivers of population change (i.e., precipitation) 

2. Quantify the change in viability of the current wild population due to immigration of 
individuals from the current captive population at CPNWR. 

3. Quantify the change in the viability of the wild Sonoran pronghorn due to USFWS’s 
proposed establishment of an additional wild population in BMGR-East. 

4. Quantify the overall prediction uncertainty arising from parameter estimation error, 
environmental stochasticity, and uncertainties due to future management. 

5. Identify the source(s) of prediction uncertainty that have the greatest influence and 
suggest how future research could reduce this uncertainty.  
 
To achieve these objectives, we modeled 3 alternative management scenarios using 

stochastic models of population dynamics for the captive and wild population(s) of Sonoran 
pronghorn.  The first management scenario was used to establish a baseline estimate of 
population viability without the potential benefits of the captive population at CPNWR or the 
reestablishment of an additional wild population.  Thus for this scenario, we modeled the future 
viability of the current wild population with no immigrants from the captive population.  The 
second scenario was used to evaluate the potential benefits of using the captive population at 
CPNWR to augment the current wild population.  For this 2nd scenario, we modeled future 
viability of the current wild population with immigrants from the captive population at CPNWR.  
The 3rd scenario modeled future viability of wild Sonoran pronghorn by including the current 
wild population, the establishment of an additional wild population east of SR 85 on BMGR-East 
(Area D; Figure 26), and immigration into these populations from the captive population at 
CPNWR. 

Analytical Approach 
American pronghorn are polygynous (Byers and Moodie 1990) and thus, population 

dynamics are largely driven by changes in the females.  Therefore, for all population growth 
models, we only considered the female population. 

Because the captive population at CPNWR is mostly buffered from density dependent 
processes (i.e., overutilization of resources) and environmental conditions (e.g., precipitation), 
we modeled female abundance (N) by assuming a constant mean annual growth rate ( )μ with 

annual variation in the realized growth rate caused by stochastic events experienced by  the 
captive population (e.g., disease, predation, demographic stochasticity, etc.)  Therefore, we 
modeled female abundance of the captive population at time t using 
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( ) ( ) [ ]1
exp

+
= × + t Ct t

N C N C Zμ σ     (1) 

where ( )~ 0tZ normal ,1 . 

Estimates ofμ and Cσ  were obtained from previous data of changes in female abundance 
where μ̂  was the average of the observed instantaneous growth rates ( [ ] [ ]1ln lnt tr N N+= − t

) 

calculated each year and ˆCσ  was the standard deviation of these growth rates (Table 11; Dennis 
et al. 1991). 

 
 
Table 11.  Changes in female abundance (Nt), adjusted to remove the effects of individuals 
introduced and removed individuals, within the captive population at CPNWR.  Reconstructed 
from Sonoran Pronghorn Monthly Updates provided by Arizona Fish and Game and Arizona 
Antelope Foundation. 
Year Adults 

introduced 
Reproduction Fawn 

mortalities 
Adult 

mortalities 
Adults 

released 
Nt Nt+1 rt 

2004 6 0 0 0 0 6 8 0.287 
2005 3 5 3 0 0 11 14 0.241 
2006 3 4 0 1 0 17 24 0.344 
2007 0 7 0 0 0 24 34 0.348 
2008 0 11 1 0 0 34 41 0.187 
2009 0 14 2 5 7 34   

      μ̂   = 0.282 

      ˆCσ  = 0.069 

 
 

Precipitation is a major factor influencing wild Sonoran pronghorn survival (Bright and 
Hervert 2005).   In addition, there is the possibility that negative density dependence (i.e., lower 
population growth rates at larger population sizes due to intraspecific competition) could also 
influence abundance.  Therefore, we modeled the change in abundance of the wild population as 
a function of annual precipitation and previous abundance (e.g., Dennis and Otten 2000).  
Because abundance of the wild population is estimated every other year, the growth model 
depicted biennial changes in abundance. 

( ) ( ) ( ) ( )0 1 22
exp Precip  + Zt t Wt t t

N W N W N Wβ β β σ
+

⎡ ⎤= × + × + ×⎣ ⎦   
(2) 

where 1β  measures the magnitude of density dependence and 2β  measures the relationship 
between precipitation and the population growth rate and Zt Wσ  represents residual or 
unexplained biennial variation in population growth.  When 1β  and 2β  equal 0, the model 
reduces to that of exponential growth with mean annual growth rate equal to 0β .  When  2β  
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equals 0, the model reduces to that of Ricker-type density dependence or Gompertz-type density 
dependence if previous abundance, (N(W)t), is log-transformed. 

The variable for precipitation (Precipt) quantifies the amount of precipitation that is 
believed to affect the change in population size during the interval t to t + 2.  We measured 
Precipt by first averaging total monthly precipitation from 3 weather stations (i.e., Organ Pipe 
Cactus National Monument, station 026132; Ajo, station 020080; Tacna 3, station 028396; 
Western Regional Climate Center) within and proximate to the current range of wild Sonoran 
pronghorn (Figure 26).  Next, we summed these monthly values across the two years between 
each abundance estimate.  For example, if population abundance was estimated in December 
1992 and again in December 1994, then Precipt was the sum of average monthly precipitation 
from January 1993 to December 1994. 

We used biennial estimates of abundance from 1992 – 2008 (USFWS 2009) and 
corresponding measures of biennial precipitation (Table 12) to fit various forms of the growth 
model (equation 2) using multiple linear regression of the form 

( )
( ) ( ) ( )2

0 1 2ln Precip  + Z+
⎡ ⎤

= = + × + ×⎢ ⎥
⎢ ⎥⎣ ⎦

t
t t tt

t

N W
r N W

N W Wβ β β σ .   (3) 

 
 

Table 12.  Changes in biennial precipitation (Precipt) and abundance of wild Sonoran pronghorn 
from 1992 to 2008. 

Year Total abundance 
estimate 

rt Precipt 

1992 179 0.455 18.75 
1994 282 -0.774 6.59 
1996 130 0.089 14.18 
1998 142 -0.361 11.20 
2000 99 -1.55 7.73 
2002 21 1.02 15.80 
2004 58 0.159 10.99 
2006 68 0.000 13.17 
2008 68   

 
 

We fit several models with and without the effects of density dependence and 
precipitation as well as models with log-transformed effects of abundance (i.e., Gompertz-type 
density dependence) and precipitation.  The information-theoretic best model, as determined by 
Akaike’s Information Criteria corrected for small sample size (AICc), was that growth of wild 
Sonoran pronghorn is dominated by the effect of precipitation (Table 13).   
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Table 13.  Selection criteria and parameter estimates for population growth models fit to 
abundance estimates from 1992-2008 for the wild population of Sonoran pronghorn.  
 
Model AICc AICc weight r-squared 

0β̂  1β̂  2β̂  Wσ̂  

β0 + β2 * ln(Precipt) 19.8 0.51 0.71 -4.72  1.87 0.39 
β0 + β2 * Precipt 20.5 0.37 0.69 -2.09  0.16 0.41 
β0  24.1 0.06 NA -0.12   0.78 
β0 + β1 * ln(Nt) 27.1 0.01 0.28 -1.70 -0.52  0.62 
β0 + β1 * ln(Nt) +  β2 * Precipt  27.4 0.01 0.77 -2.76 -0.30 0.14 0.35 
β0 + β1 * ln(Nt) +  β2 * ln(Precipt) 27.6 0.01 0.76 -4.93 -0.24 1.66 0.36 
β0 + β1 * Nt 28.3 0.01 0.16 0.35 -7.77  0.67 
β0 + β1 * Nt +  β2 * ln(Precipt) 29.1 0.00 0.71 -4.55 -0.93 1.82 0.39 
β0 + β1 * Nt +  β2 * Precipt 29.3 0.00 0.70 -1.81 -2.83 0.15 0.40 

 
There was negligible difference in AICc and model fit (i.e., r-squared) between the model 

with log-transformed precipitation versus no transformation.  For future projections we used the 
model with log-transformed precipitation because of slightly better selection criteria and fit and 
because it was more biologically plausible to assume population growth rate was most affected 
by precipitation at low amounts and became less affected as precipitation increased (Figure 27).  
Under this model, the ‘equilibrium’ (i.e., no population growth) precipitation level was 12.46 
inches biennially.  If biennial precipitation were above this amount, we would expect the 
population to increase.  Conversely, if biennial precipitation were below this amount, we would 
expect the population to decrease. 
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Figure 27.  Relationship between biennial growth rate of the wild Sonoran pronghorn population 
and biennial precipitation.  Fitted line depicts a linear relationship between growth rate and log-
precipitation. 
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Future population projection and viability 

The population viability model projected future abundance of Sonoran pronghorn based 
on the aforementioned growth models with parameter estimates obtained by fitting these models 
to previous abundance and precipitation data.  Future abundance was projected for t = 1 to 20 
time steps (years) and for stochastic models we simulated j = 1 to 4000 replicate trajectories.  For 
all scenarios, initial abundances for the captive ( ) ,0j

N C and wild populations ( ) ,0j
N W were set to 

the last observed abundance for each (i.e., 34 females for the captive population and 34 females 
for the wild population, assuming a 50:50 sex ratio of males and females).   

For the 1st scenario in which the current wild population receives no immigration from 
the captive population, we projected future abundance of the current wild population using 

 

( ) ( ) ( )0, 2, , , ,, 2 ,
ˆ ˆ ˆexp ln Precip  + 

+
⎡ ⎤= × + ×⎣ ⎦j j j t j tj t j t

N W N W Zβ β σW j    
(4) 

where 0β̂ , 2β̂ , and ˆWσ  were the estimated values fit to past abundance and precipitation data and 

,j tZ  was a random deviate from a standard normal distribution (i.e., mean = 0, std. deviation = 1). 

For the 2nd scenario in which the current wild population continues to receive individuals 
from the CPNWR captive population, we projected future abundance using 

 

( ) ( ) ( ) ( ) ( )0, 2, , , ,, 2 , 1 2
ˆ ˆ ˆexp ln Precip  + 

+ + +
⎡ ⎤ ⎡ ⎤= + + × + ×⎣ ⎦⎣ ⎦ j j j t j tj t j t t t

N W N W I C I C Zβ β σW j

2+t

 
(5) 

where  was the number of immigrants into the wild population from the CPNWR 

captive population.  The number of immigrants to the wild population was determined by 
comparing the number of individuals in the captive population to a fixed capacity 

( ) ( )1+
+

t
I C I C

( )K C  for the 

enclosure, which we set at 34 adult females.  If the number of individuals in the captive 
population exceeded the capacity of the enclosure, those excess individuals became emigrants 
available for transfer to the wild population.  To determine the number of immigrants, we first 
projected future abundance of the captive population using 

 

( ) ( ) , ,, 1 ,
ˆ ˆexp

+
⎡ ⎤= × +⎣ ⎦j j t C jj t j t

N C N C Zμ σ
    

(6) 
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At each time step, the size of the captive population was compared to the capacity of the 
enclosure, and the number of immigrants ( ) 1+t

I C  into the wild population was calculated as  

( ) ( )1t
If N C K C then

+
⎡ ⎤>⎣ ⎦  

( ) ( ) ( )1 1+ +
= −

t t
I C N C K C  

and the abundance of the captive population reset to 

   ( ) ( )1t
N C K C

+
= .

 
Our 3rd scenario projected future abundance of wild Sonoran pronghorn in southern 

Arizona including the current wild population and the establishment of an additional wild 
population east of SR 85 on BMGR-East (Area D) with both wild populations receiving 
immigrants from CPNWR captive population.  We projected future abundance of both the 
current wild population, now denoted with subscript 1 ( )1N W  to differentiate this population 

from the current wild population without the reestablished wild population , using ( )2N W

 

( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 0, 2, , 1, 2 , 1 2 ,
ˆ ˆ ˆexp ln Precip  + 

+ + +
⎡ ⎤ ⎡= + × + × + ×⎣ ⎦ ⎣ ,

⎤
⎦j j j tj t j t t t j t

N W N W Y I C I C Z Wβ β σW j  
(7) 

and  

( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 0, 2, , 2, 2 , 1 2 ,
ˆ ˆ ˆexp ln Precip  + 

+ + +
⎡ ⎤ ⎡= + × + × + ×⎣ ⎦ ⎣ ,

⎤
⎦j j j tj t j t t t j t

N W N W Y I C I C Z Wβ β σW j  
(8) 

where ( )1 ,j t
Z W  and ( )2 ,j t

Z W  were standard normal deviates with a correlation of ρ  and Y1 and Y2 

were indicator functions governing whether emigrants from the captive population were sent to 
the current wild population or the reestablished population.  We had no previous data to estimate 
ρ but assumed there would be some correlation in population growth rates (above and beyond 
the effect of precipitation) between the current and reestablished wild populations so we set ρ  = 
0.5. 

The proposed protocol by USFWS governing movement decisions is described as follows 
(USFWS 2009:36):  

“…[When] there are additional Sonoran pronghorn available for release from the Cabeza 
Prieta NWR captive-breeding pen, moving and releasing these pronghorn into Area D 
would be considered for establishment of a third population.  These relocation actions 
would occur when habitat conditions at Cabeza Prieta NWR are too poor to support 
additional wild pronghorn (i.e., those not in the breeding pen) or when the population of 
Sonoran pronghorn within the current U.S. range is greater than 140 animals.” 

Following these guidelines, immigrants from the captive population were moved to Area D, 
when the current U.S. population within the existing range was greater than 140 (i.e., 70 females 
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assuming a 50:50 sex ratio).  Thus, if ( )1 70⎡ ⎤<⎣ ⎦t
N W  then Y1 = 1 and Y2 = 0, otherwise Y1 = 0 and 

Y2 = 1.  We did not include an option to make movements based on “poor” habitat conditions 
although it might be reasonable to make this choice dependent on localized precipitation.  
Because of an assumed barrier to movement imposed by SR 85, we did not allow any 
movements between the current and reestablished wild populations. 

We placed 2 additional restrictions on all simulated population growth.  First we set a 
limit on the realized finite growth rate [ ]1 /+tN Nt  equal to 2 based on the highest observed finite 

growth rate in the captive population (i.e.,. 1.86) and the highest reasonable biological limit (i.e., 
3) which assumes 2 fawns per doe and 100% survival of does and fawns.  The second restriction 
was a “ceiling” carrying capacity of both the current and reintroduced wild populations of 141 
females (i.e., the highest observed abundance of the current wild population from 1992 – 2008 
assuming a 50:50 sex ratio). 

Prediction uncertainty 
We ran future projections containing 4 levels of prediction uncertainty for each of the 3 

management scenarios (i.e., no movement, movement only to the current wild population, and 
movement to the current and reestablished wild populations).  The first level did not incorporate 
any uncertainty and was a deterministic projection of the wild populations.  The second set of 
projections incorporated uncertainty due to parameter estimation error, future precipitation, and 
residual variation in growth models, each individually without the effect of the other two.  The 
third contained all combinations for 2 of the 3 sources of prediction uncertainty (i.e., parameter 
estimation error and future precipitation, parameter estimation error and residual variation, future 
precipitation and residual variation).  The 4th level contained all sources of uncertainty. 

For simulations incorporating uncertainty due to residual or unexplained error (i.e., 
stochasticity) in population growth, simulations were run with the maximum likelihood estimates 
of Cσ  and Wσ , otherwise these parameters equaled zero (i.e., projections were deterministic, 
except for possible uncertainty due to parameter estimation or future precipitation). 

For simulations incorporating uncertainty due to parameter estimation error, we drew 
new estimates of model parameters for each replicate j from their respective sampling 
distributions.  Thus, for the captive population, ˆ jμ  was drawn from a normal distribution with 

mean = μ̂  and standard deviation =  ( )ˆSE μ , the standard error, and  

 

     
2

2
,

ˆˆ
1

=
−
C

C j jV
q
σσ  

where q = number of observed rates of change (i.e., 5 for our captive population) and Vj was 
drawn from a chi-square distribution with q – 1 degrees of freedom (Dennis et al. 1991).  For the 
wild populations, we used a parametric bootstrap with past abundance and precipitation data to 
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obtain new estimates of 0β̂ , 2β̂ , and ˆWσ  for each replication.  Thus, for each replicate j we 
simulated a new time series of past abundance data using 

 

( ) ( ) ( )0 2 ,2
ˆ ˆ ˆexp ln Precip  + 

+
⎡ ⎤= × + ×⎣ ⎦t j t Wt t

N W N W Zβ β σ
   

(9) 

with an initial abundance set to half (assuming a 50:50 sex ratio of males and females) of the first 
estimated abundance in 1992, , and precipitation values equal to those observed 

from 1992 - 2008.  We then refit the model (equation 3) using this new time series of abundance 
to obtain 

( ) ,0
89.5=

j
N W

0,
ˆ

jβ , 2,
ˆ

jβ , and ,ˆW jσ . 

For simulations incorporating uncertainty due to future precipitation, there were several 
alternatives.  Analogous to our approach of using past abundance data to project future 
population dynamics, we based our projections of future precipitation on observed levels in the 
past.  The 3 stations most proximate to the future distribution of Sonoran pronghorn are those we 
used to fit our population growth models (i.e., Organ Pipe Cactus National Monument, Ajo, and 
Tacna 3).  However these stations only have reliable precipitation estimates back to 1969.   
Biennial precipitation from these stations during 1969 – 2008 suggested a declining trend (Figure 
28a).  However, a more complete record of past precipitation, 1899 – 2008, was available from 
the nearby Gila Bend weather station (Figure 26).  For this extended time period, a similar 
declining trend in precipitation was not evident (Figure 28b).  Therefore, as a conservative 
approach, we modeled future precipitation based on the 3-station average (i.e., Organ Pipe 
Cactus National Monument, Ajo, and Tacna 3) from 1993 – 2008 which coincided with the 
period during which wild abundance was modeled (see description of Precip variable described 
above).  Based on these data, we did not include a trend in precipitation but instead drew a value 
of ,Precip j t  using the mean = 12.30 and standard deviation = 4.05 of biennial precipitation during 

this time. 
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Figure 28.  Historic biennial precipitation from 3-station (Organ Pipe Cactus National 
Monument, Ajo, and Tacna 3) average (a) and Gila Bend (b) weather stations.  See Figure 26 for 
geographic locations of these stations. 

 
We described prediction uncertainty by calculating a probability density surface for final 

abundances using a kernel density estimate implemented using the function “plot(density)” in R.  
We evaluated the contribution of each source of uncertainty by calculating the proportional 
reduction in total prediction uncertainty due to removing each source, 

 
[ ]

s

Var(total) Var( s)
PR

Var(total)
− ≠

=  

where Var(total) is the variance in final abundance with all sources of uncertainty and Var( s)≠ is 
the variance in final abundance not including source (s).  Model fitting and viability simulations 
were conducted using the statistical computing software R (www.r-project.org/).   
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Findings 
Population Viability (no prediction uncertainty) 

Mean biennial precipitation used in our simulations (i.e., 12.30 inches) was slightly 
below the precipitation level of 12.46 for which we would expect zero population growth.  
Therefore, the wild population would be expected to undergo a slight decline in abundance if 
future precipitation was held at the mean precipitation over the last 15 years and there was no 
immigration from the captive population.  Thus, starting with 34 individuals, the final population 
size of current wild with population was 26 (Figure 29). 

The expected number of immigrants ( )I C  from the captive population to the wild 
population(s) can be calculated by setting ( ) ( ) ( )1+

= =
t t

N C N C K C  so that the captive population is 

maintained at capacity by the removal of emigrants.  Thus, the population growth model for the 
captive population, ( ) ( ) ( ) ( )1

exp
+
= ×

t t
N C μ −

t
I CN C , would equal ( ) ( ) ( ) ( )exp= × −K C K C I Cμ .  

Solving for the expected number of immigrants to maintain this relationship, 
( ) ( ) ( ) 1− ⎤⎦

ˆ 0.2818

exp= × ⎡⎣I C K C μ .  Finally, using the last number of females in the enclosure as the target 

capacity, K(C) = 34, and μ =  estimated from previous data, the expected number of 
annual immigrants from that captive population at CPNWR is 

( ) ( ) 0.3255 11.06= × =I C K C  .    (10) 

Equation 10 indicates that the capacity of the captive population would have to be increased by 
approximately 3 individuals to increase the expected number of immigrants by 1. 

Incorporating movements from the captive population to the current wild population, the 
final population size of the wild population without the reestablishment of an additional 
population was 141 (i.e., the limit imposed by the “ceiling” carrying capacity) and with 
reestablishment of an additional population was 220 (Figure 29). 
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Figure 29.  Deterministic projections of the wild Sonoran pronghorn 20 years into the future. 
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Population viability (residual uncertainty) 
Including uncertainty due to unexplained (i.e., residual) variation in population growth 

resulted in probabilistic distributions for final population size (Figure 30).  With this type of 
prediction uncertainty, the probability that the final wild population would be below 50 
individuals was 0.73 without immigration from the captive population; 0.02 with immigration 
into the current wild population ; and 0.01 with immigration and the reestablishment of an 
additional population.   The probability that the final wild poplation would be above 100 
individuals without immigration from the captive population was 0.10; 0.74 with immigration 
into the current wild population; and 0.90 with immigration and the reestablishment of an 
additional wild population. 
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Figure 30.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include unexplained or residual variation only.  
Vertical lines are final abundances from deterministic projections.  Right-side peaks in the 
distributions are due to the “ceiling” carrying capacities (i.e., 141 individuals) imposed on these 
populations, thus final abundances were truncated at these values.  
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Population viability (parameter estimation uncertainty) 
Including uncertainty due to parameter estimation error produced results similar to those 

from including uncertainty due to residual variation in population growth models (Figure 31).  
With this type of prediction uncertainty, the probability that the final wild population would be 
below 50 individuals without immigration from the captive population was 0.65; 0.05 with 
immigration into the current wild population; and 0.04 with immigration and the reestablishment 
of an additional population.   The probability that the final wild poplation would be above 100 
individuals without immigration from the captive population was 0.19; with immigration into the 
current wild population was 0.74; and with immigration and the reestablishment of an additional 
wild population was 0.83. 
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Figure 31.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include parameter estimation error only.  Vertical 
lines are final abundances from deterministic projections.  Right-side peaks in the distributions 
are due to the “ceiling” carrying capacities (i.e., 141 individuals) imposed on these populations, 
thus final abundances were truncated at these values.  
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Population viability (uncertainty in future precipitation) 
Including uncertainty due to future precipitation resulted in a greater likelihood of lower 

final population abundances than predictions including only residual variation or parameter 
estimation error (Figure 32).  With this type of prediction uncertainty, the probability that the 
final wild population would be below 50 individuals without immigration from the captive 
population was 0.83; with immigration into the current wild population was 0.22; and with 
immigration and the reestablishment of an additional population was 0.18.   The probability that 
the final wild poplation would be above 100 individuals without immigration from the captive 
population was 0.08; with immigration into the current wild population was 0.51; and with 
immigration and the reestablishment of an additional wild population was 0.60. 
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Figure 32.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include parameter estimation error only.  Vertical 
lines are final abundances from deterministic projections.  Right-side peaks in the distributions 
are due to the “ceiling” carrying capacities (i.e., 141 individuals) imposed on these populations, 
thus final abundances were truncated at these values.  Left-side peak in the distribution of the 
current wild population with no immigration from the captive population is not shown to retain a 
reasonable range on the y-axis. 
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Population viability (uncertainty from residual variation and parameter estimation) 
Prediction uncertainty due to residual variation in the population growth models and 

parameter estimation error was similar to that when these types were included individually 
(Figure 33).  With these types of prediction uncertainty, the probability that the final wild 
population would be below 50 individuals without immigration from the captive population was 
0.65; with immigration into the current wild population was 0.05; and with immigration and the 
reestablishment of an additional population was 0.03.   The probability that the final wild 
poplation would be above 100 individuals without immigration from the captive population was 
0.20; with immigration into the current wild population was 0.73; and with immigration and the 
reestablishment of an additional wild population was 0.82. 
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Figure 33.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include residual variation and parameter 
estimation error.  Vertical lines are final abundances from deterministic projections.  Right-side 
peaks in the distributions are due to the “ceiling” carrying capacities (i.e., 141 individuals) 
imposed on these populations, thus final abundances were truncated at these values. 
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Population viability (uncertainty from residual variation and future precipitation) 
Prediction uncertainty due to residual variation in the population growth models and 

future precipitation was similar to that when only precipitation was included (Figure 34).  With 
these types of prediction uncertainty, the probability that the final wild population would be 
below 50 individuals without immigration from the captive population was 0.85; with 
immigration into the current wild population was 0.23; and with immigration and the 
reestablishment of an additional population was 0.20.   The probability that the final wild 
poplation would be above 100 individuals without immigration from the captive population was 
0.07; with immigration into the current wild population was 0.48; and with immigration and the 
reestablishment of an additional wild population was 0.59. 
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Figure 34.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include residual variation and uncertainty in 
future precipitation.  Vertical lines are final abundances from deterministic projections.  Right-
side peaks in the distributions are due to the “ceiling” carrying capacities (i.e., 141 individuals) 
imposed on these populations, thus final abundances were truncated at these values.  Left-side 
peak in the distribution of the current wild population with no immigration from the captive 
population is not shown to retain a reasonable range on the y-axis. 
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Population viability (uncertainty from parameter estimation and future precipitation) 
Prediction uncertainty due to parameter estimation error and future precipitation was 

similar to that when only precipitation was included (Figure 35).  With these types of prediction 
uncertainty, the probability that the final wild population would be below 50 individuals without 
immigration from the captive population was 0.83; with immigration into the current wild 
population was 0.25; and with immigration and the reestablishment of an additional population 
was 0.21.   The probability that the final wild poplation would be above 100 individuals without 
immigration from the captive population was 0.09; with immigration into the current wild 
population was 0.48; and with immigration and the reestablishment of an additional wild 
population was 0.58. 

 
 
 

 

0 100 200 300 400

0.
00

0
0.

03
5

Final Abundance

Pr
ob

ab
ilit

y 
de

ns
ity

Current wild population with 
immigration from captive 

Current wild population with 
no immigration from captive 

Current and reintroduced wild 
populations with immigration 
from captive 

 
Figure 35.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include parameter estimation error and 
uncertainty in future precipitation.  Vertical lines are final abundances from deterministic 
projections.  Right-side peaks in the distributions are due to the “ceiling” carrying capacities (i.e., 
141 individuals) imposed on these populations, thus final abundances were truncated at these 
values.  Left-side peak in the distribution of the current wild population with no immigration 
from the captive population is not shown to retain a reasonable range on the y-axis. 
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Population viability (all sources of uncertainty) 

Prediction uncertainty when all sources (i.e., residual variation, parameter estimation, and 
future precipitation) were included was similar to previously described subsets that included 
uncertainty in future precipitation (Figure 36).  With these types of prediction uncertainty, the 
probability that the final wild population would be below 50 individuals without immigration 
from the captive population was 0.82; with immigration into the current wild population was 
0.26; and with immigration and the reestablishment of an additional population was 0.21.   The 
probability that the final wild poplation would be above 100 individuals without immigration 
from the captive population was 0.09; with immigration into the current wild population was 
0.48; and with immigration and the reestablishment of an additional wild population was 0.57. 
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Figure 36.  Probability density of final abundance of wild Sonoran pronghorn 20 years into the 
future based on population growth models that include all sources of prediction uncertainty (i.e.,  
residual variation, parameter estimation error, and uncertainty in future precipitation).  Vertical 
lines are final abundances from deterministic projections.  Right-side peaks in the distributions 
are due to the “ceiling” carrying capacities (i.e., 141 individuals) imposed on these populations, 
thus final abundances were truncated at these values.  Left-side peak in the distribution of the 
current wild population with no immigration from the captive population is not shown to retain a 
reasonable range on the y-axis. 
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Component contributions to overall uncertainty  
For the management scenario including the reestablishment of an additional wild 

population and including immigration from the CPNWR captive population, uncertainty in future 
precipitation was the dominant contributor to overall prediction uncertainty accounting for 32% 
of the variation in final abundance (Table 14).  Parameter estimation error was the next largest 
contributor accounting for 11%, while residual or unexplained variation in the population growth 
models was the least significant contributor accounting for 3% of the variation in final 
abundance. 

 
Table 14.  Variation in the final abundance of wild Sonoran pronghorn and percent reduction due 
to the removal of each component.  Results are for the management scenario including the 
reestablishment of an additional wild population and including immigration from the captive 
population.   
 
Component of 
uncertainty removed 

Variation included in viability model Variance in final 
abundance 

Percent reduction in 
all-sources variance 

 All sources 8628  
Future precipitation Parameter estimation and model residual 5886 32 
Parameter estimation Model residual and future precipitation 7644 11 
Model residual Future precipitation and parameter estimation 8341 3 

 
 
Implications 

 
Cressie et al. (2009:553) recently stated, “The field of ecology is becoming increasingly 

aware of the importance of accurately accounting for multiple sources of uncertainty when 
modeling ecological phenomena and making inferences. … However, accounting for various 
sources of uncertainty is by no means a simple task.”  Despite recognition of the importance of 
incorporating various sources of uncertainty into PVA (Reed et al. 2002),  the complexity of 
PVA models seemed to have precluded robust attempts to include multiple sources of 
uncertainty into predictions (but see Bakker et al. 2009 for a recent exception).  We presented an 
approach for accomplishing this goal for PVA models based on time-series of abundance data.  
Our approach was similar to that used by Bakker et al. (2009) in that each source of uncertainty 
was quantified based on empirical data and then propagated within the projection model.  By 
doing so, we were able to more realistically evaluate the benefit of the captive breeding program 
and potential reestablishment of an additional wild population to Sonoran pronghorn viability.  
Additionally, we were able to identify which source (i.e., future precipitation) was the greatest 
contributor to overall uncertainty such that future research could target this source to acquire 
more confidence in future predictions.  

As expected, including more sources of uncertainty resulted in more ambiguous 
conclusions regarding the benefit of the captive population at CPNWR and the reestablishment 
of an additional wild population on BMGR-East.  While the relative benefit of each management 

 82



   

option was evident from deterministic projections, incorporation of major sources of uncertainty 
revealed additional insight about the expected fate of Sonoran pronghorn under these 
management options.  For example, deterministic projections suggested the wild population 
without immigration from the captive breeding program would undergo a slight decline in 
abundance from 34 to 26 females over the next 20 years.  However, when uncertainty was 
included, the most likely final abundance was much lower (i.e. <10; see Figure 36).  
Additionally, there was considerable uncertainty in the final abundance of the wild population 
with immigration and the reestablishment of an additional population as evidenced by the 
relatively flat probability distribution for final abundance (see Figure 36).  However, despite this 
increased uncertainty, both management actions (i.e., the captive population at CPNWR and the 
reestablishment of an additional wild population) dramatically increase the viability of wild 
Sonoran pronghorn.  Without the additional individuals provided by the captive breeding 
program, the wild population has a high probability of reaching abundance levels that are 
unsustainable and a low probability of reaching an abundance that is higher than 100 females. 

The dominant contributor to overall uncertainty in future abundance of Sonoran 
pronghorn was the lack of knowledge of future precipitation.  Two factors are responsible for 
this relationship.  First, there was a close association between Sonoran pronghorn population 
growth and the amount of biennial precipitation.  Thus, future abundance of Sonoran pronghorn 
was closely tied to future precipitation.  The second factor was highly variable biennial 
precipitation (i.e., coefficient of variation = 0.33).  Thus, approximately 90% of the simulated 
values for future precipitation would range from 4.2 to 20.4 inches, a range that would 
dramatically influence population growth (see Figure 27) and result in highly variable future 
population abundances.  It is worth noting that even though precipitation was the dominant 
source of uncertainty, there is actually more uncertainty than our simulations suggest.  For 
example, we did not include error from our estimates of mean and standard deviation of biennial 
precipitation.  Furthermore, there is likely substantial model selection uncertainty related to 
projecting future precipitation.  In sum, research will need to make modeling future precipitation 
a high priority. 

In comparison to uncertainty in future precipitation, parameter estimation error 
contributed less to overall uncertainty in future pronghorn abundance.  Our results suggest that 
removal of parameter estimation error would reduce overall uncertainty by 11%.  While this 
reduction is not negligible, it is  surprisingly small considering the limited data from which 
model parameters were estimated (sample sizes of 5 for the captive population and 8 for the wild 
population).  Nonetheless, there are two ways future research could reduce this uncertainty.  The 
first, and most obvious, is to collect more data.  Thus, to reduce prediction uncertainty due to 
estimation error, it will be important to continue current monitoring efforts.  In particular, the 
number of adult females and female offspring of these individuals in the captive population(s) 
will need to be recorded annually.  It is equally important to continue to obtain biennial estimates 
of abundance for the wild population.  Related, a better estimate of the sex ratio in the wild 
population would allow for a closer match between model predictions and actual female 
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abundance.  A second, less obvious, way to reduce estimation error is to develop better models 
of population growth.  Reducing the residual or unexplained variation in population growth 
models has the dual benefit of both reducing uncertainty due to this source as well as reducing 
parameter estimation error.  So while residual error was the least significant contributor to 
overall prediction uncertainty, future research should continue to seek ways to reduce 
unexplained variation in Sonoran pronghorn growth rates.  For example, there are several factors 
(e.g., predator abundance, supplemental feeding or watering, forage abundance/quality, etc.) that 
could be included as potential covariates in models of population growth.  Incorporating these 
additional covariates will necessarily lead to increased parameter estimation error or model 
variance but if information-theoretic criteria are used for model selection, there is a good chance 
that additional covariates will only be included if the reduction in residual variation (i.e., model 
bias) outweighs the increase in model variance. 

Our main goal was to develop an approach for including most of the dominant sources of 
uncertainty into PVA models based on time-series of abundance data.  However, our 
demonstration of this approach using Sonoran pronghorn makes this research highly relevant to 
DoD and BMGR.  We demonstrated that there is significant value to the reestablishment of an 
additional wild population of Sonoran pronghorn on BMGR-East as well as the maintenance of 
the current captive breeding program at CPNWR.  Now that the approach has been developed, 
we encourage further application by DoD to assess management scenarios not included in our 
analysis.  For example, the most ambitious alternative for reestablishment proposed by USFWS 
(2009) calls for the creation of an additional captive population on Kofa National Wildlife 
Refuge (KNWR) and the reestablishment of a 3rd wild population north of the current 
distribution on KNWR.  We see great potential to include our approach within an optimized 
decision process to determine how long these captive programs will need to be maintained (e.g., 
Schuab et al. 2009) and to evaluate other management options. 
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CONCLUSIONS AND IMPLICATIONS: AN EXPANDED TOOLSET FOR 
ASSESSING MANAGEMENT OF LISTED SPECIES ON DEPARTMENT 

OF DEFENSE LANDS  
 

Military managers and biologists are frequently faced with evaluating how a wide range 
of activities may affect the viability of species of concern.  In the previous sections we described 
three approaches, with accompanying tools for implementation, to evaluate these effects that can 
be applied given the widely varying levels of data availability typically encountered by 
biologists.  The first is a framework based on structured population models that can be used to 
evaluate the effect management actions might have on population growth rate for species about 
which little is known.  The approach leverages information on how particular management 
actions affect the demographic vital rates of either the focal species or similar surrogate species 
to determine the conditions under which a positive growth rate can be expected.  This framework 
is especially helpful for developing a course of immediate action to prevent further decline and 
prioritizing future research and management.  As an example, we demonstrated that arroyo toad 
population growth is highly dependent on survival of toads during their terrestrial life stages 
(adult and juvenile).  We also illustrated the strong effect of parameter uncertainty on population 
persistence estimates, underscoring the need to obtain better measures of survival in this species.  
Other forms of uncertainty have similarly strong influences on population growth in other 
species.  When we incorporated environmental variability into a meta-analysis of management 
effects on plant vital rates, we found that the effectiveness of specific management activities 
varied depending on the type of habitat and the life stages targeted by the management actions.  
Again, these results drive home the importance of identifying the most influential sources of 
uncertainty and undertaking efforts to better estimate those parameters. 

The second approach makes use of commonly available abundance estimates that have 
been collected over a period of years.  These time series of count data are the product of long-
term monitoring programs and can be used to fit various stochastic models of population growth 
which can then be used to assess population trend and viability or identify important 
environmental drivers of population growth.  Publicly available software (PopGrowth) was 
created to facilitate these analyses.  In addition, we extended exponential and density-dependent 
state space models, which include both environmental process variability and observation error, 
to accommodate data sets with missing time intervals.  These models greatly enhance the ability 
of researchers to assess the influence of density dependence, environmental covariates, and 
sampling error on population growth, even when time series of abundance estimates are 
incomplete.  We applied a set of population growth models to the greater sage-grouse population 
at Yakima Training Center (YTC) and showed that the population growth rate is negatively 
influenced by drought and increasing area of grassland habitat.  Overall, the probability of this 
population dropping below an extinction threshold of 50 lekking males was high under the 
models that incorporated drought or grassland area.  This analysis illustrates the importance of 
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managing for native shrubland habitat but also suggests that continued persistence of the YTC 
sage-grouse population may require management intervention beyond habitat preservation. 

Third, for the few, albeit important, species for which there is detailed information about 
vital rates, spatial structure, and metapopulation characteristics, we developed methods and 
software for conducting global sensitivity analyses of viability models for single or multiple 
populations.  Results from these sophisticated sensitivity analyses can be used to identify the 
relative effects of various management decisions on species viability as well as identifying the 
parameters that need to be estimated more precisely to reduce model uncertainty.  We 
demonstrated these analyses using a pilot conservation incentive program for the golden-cheeked 
warbler at Fort Hood.  We found that uncertainty in model structure and parameter estimates 
made it impossible to develop general guidelines for valuing golden-cheeked warbler habitat 
patches, and identified parameters that need to be targeted in future research. 

Finally, we combined several of these approaches to incorporate various sources of 
uncertainty into population viability models, using the Sonoran pronghorn at Barry M. 
Goldwater Range as an example.  Using time-series estimates of abundance for multiple 
populations, we estimated the probability of persistence for Sonoran pronghorn under 3 
management scenarios and identified the sources of uncertainty that most need to be reduced to 
improve projections of persistence under different management actions.  Despite the inclusion of 
all major sources of prediction uncertainty, our results showed a clear and substantial benefit, in 
terms of overall viability, to supplementing the wild population with individuals from the captive 
population at Cabeza Prieta National Wildlife Refuge. 

While the demonstrations of our approaches have clear and immediate use to the 
managers of focal installations, our work has implications beyond the specific case studies 
presented here.  The tools we’ve developed can guide management and research priorities 
regardless of the amount or type of information known about a species of concern.  They can 
make informed evaluations of how a population is doing and what might be the effects of 
different types of management.  With these approaches, assumptions and uncertainty about 
model structure and parameter estimates are more explicit, allowing for critical evaluation of 
model results.  Perhaps most importantly, each of these tools provides direction as to how future 
research should proceed by elucidating the factors that are most important to population viability. 

The basic premise behind each of our tools is that we can evaluate the effect of 
management actions by employing various methods of uncertainty and sensitivity analysis to an 
appropriate model of population growth.  Critical to effective implementation is knowledge of 
how management actions affect particular parameters in a population growth model.  The 
approaches developed here can be applied in an adaptive management framework to guide 
science-based recovery actions across a range of available data and management actions.  This is 
a great opportunity for adaptive management to provide the empirical knowledge that is vital to 
the success of population viability models.   
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Future Directions 
 

The goal of our project was to develop methods and tools for evaluating the effects of 
management or training on the viability of listed species based on the level of biological 
information known.  Throughout our work we have recognized the challenges presented by 
uncertainty in model predictions. If overall uncertainty in model predictions is too large, 
inferences about changes in population viability due to management or military actions will be 
unreliable.  To effectively isolate these effects, we must first quantify overall uncertainty, 
partition the uncertainty into contributions from each component, and then reduce the 
uncertainty.  Our project has set the foundation for achieving this goal by demonstrating 
approaches for quantifying and partitioning different sources of uncertainty.  Further 
development of this work would include finding ways to reduce sources of uncertainty through 
an iterative process of adaptive management.  Adaptive management, although easily described 
(i.e., ‘learning by doing’), can be challenging to implement particularly in the context of 
marrying hard-won field data with rigorous population ecology models to recover species. When 
implemented in an adaptive management framework, our approaches for quantifying sources of 
uncertainty can be used to focus research and monitoring efforts so field data can be efficiently 
gathered and incorporated into an analysis of population viability.  
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Technology Transfer 
 

Key to the success of this project was the engagement of DoD biologists and managers in the 
framing of questions and development of databases and analytical software. This was 
accomplished by hosting workshops and informational sessions at installations where focal 
species occur, hosting workshops at national conferences, and presenting posters and oral 
presentations at national meetings of DoD biologists and managers.  Details of workshops, 
presentations, and publications are provided in Appendix B.   

As we prepared to apply each of our tools to species of DoD management concern, we met with 
natural resources staff from installations hosting populations of potential focal species.  These 
meetings helped identify ongoing management questions for these species, identify and gather 
available data for each species, assess the suitability of our approaches for each species, and 
introduce our approaches to DoD biologists.  During this phase we met with staff from Fort 
Hood, YTC, BMGR, Fort Huachuca, Mountain Home Air Force Base, Eglin Air Force Base, 
Camp Roberts/Camp San Luis Obispo, and Fort Hunter Liggett.  These meetings often included 
agency and collaborating biologists (e.g., USFWS, The Nature Conservancy, Texas A&M 
University).  We later hosted an installation-specific workshop at YTC to demonstrate the 
analyses and software we had developed and present preliminary results of our population 
viability analyses for sage-grouse at YTC.  

We organized workshops at national meetings where we introduced our approaches for 
population viability analysis to biologists and managers.  These events included a workshop at 
The Wildlife Society national conference in Miami, Florida in 2008 and a technical session and 
workshop at the National Military Fish and Wildlife Association conference in Washington, D.C 
in 2009.  Additionally, we coordinated technical sessions at The Wildlife Society national 
conference in Monterey, California in 2009 and the SERDP-ESTCP Technical Symposium in 
2008, each of which brought together experts in endangered species management to discuss 
challenges and perspectives on post-recovery management of listed species.   
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Appendix A.  Supporting Data 
 

General life history models with selected results 
Many threatened and endangered species on Department of Defense lands share similar 

life history traits (e.g. annual and biennial plants, amphibians, birds that mature in their first 
year).  In this appendix we include models for eight general life history types commonly found 
on DoD installations, and demonstrate how, for each life history type, population growth rates 
are predicted to change as function of changes to mean demographic rates, and with increasing 
variability in these rates.  Any particular species would be a specific case of one of these models. 

 

Included are the following models: 

1) annual plants 
2)  semelparous perennial or biennial plants 
3) perennial plants 
4)  amphibians 
5)  birds maturing at 1 year of age 
6)  slow maturing, long-lived birds 
7) slow maturing, long-lived turtle 
8) small mammals (e.g. mice, kangaroo rats) 
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1) A general model for annual plants  

 

 
 
Figure A-1: A life cycle diagram encapsulating the basic life history of an annual plant. 
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Figure A-2: A general matrix model for an annual plant. 
 
 
Table A-1: Parameter definitions and values used in the annual plant model. 

Parameter Values used Definition 

F 1 - 200 number of viable seeds produced per 
plant 

Ss 0.3, 0.6 annual seed survival 

G 0.5 probability a seed germinates 

E 0.05 – 1.0 probability a germinated seed 
becomes a seedling 

Sj 0.3, 0.6, 0.9 survival from seedling stage to 
flowering 
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Selected model output:  
 
 

 
 

Figure A-3:  Output of a deterministic matrix model for an annual plant.  Mean annual seed 
survival (Ssd) is kept constant at 60%, while the three lines represent output from models in 
which mean survival from the seedling stage to reproduction (Sj) is 30%, 60% and 90%.   
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Figure A-4:  Output of a stochastic matrix model (dashed lines) for an annual plant when all 
parameters vary at 25% of their maximum possible σ values.  Mean annual seed survival (Ssd) is 
kept constant at 60%, while the three lines represent models in which mean survival from the 
seedling stage to reproduction (Sj) is 30%, 60% and 90%.  Solid lines represent the results from 
the deterministic model (as in Figure A-3). 
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Figure A-5:  Output of a stochastic matrix model (dashed lines) for an annual plant when the 
number of seeds produced per plant (F)  and seedling recruitment (E) vary at 75% of their 
maximum possible σ value, while all other parameters vary at 25% of their maximum σs.  Mean 
annual seed survival (Ssd) is kept constant at 60%, while the three lines represent models in 
which mean survival from the seedling stage to reproduction (Sj) is 30%, 60% and 90%.  Solid 
lines represent the results from the deterministic model (as in Figure A-3). 
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Figure A-6:  Output of a stochastic matrix model (dashed lines) for an annual plant when the 
number of seeds produced per plant (F), germination rate (G) and seedling recruitment (E) vary 
at 75% of their maximum possible σ values, while all other parameters vary at 25% of their 
maximum σs.  Mean annual seed survival (Ssd) is kept constant at 60%, while the three lines 
represent models in which mean survival from the seedling stage to reproduction (Sj) is 30%, 
60% and 90%.  Solid lines represent the results from the deterministic model (as in Figure A-3). 
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Figure A-7:  Output of a stochastic matrix model (dashed lines) for an annual plant when just the 
survival from seedling to reproduction (Sj) varies at 75% of its maximum possible σ values, 
while all other parameters vary at 25% of their maximum σs.  Mean annual seed survival (Ssd) is 
kept constant at 60%, while the three lines represent models in which mean survival from the 
seedling stage to reproduction (Sj) is 30%, 60% and 90%.  Solid lines represent the results from 
the deterministic model (as in Figure A-3). 
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Figure A-8:  Output of a deterministic matrix model for an annual plant when mean survival 
from seedling to reproduction (Sj) is 30%, 60% and 90% and mean annual seed survival is 30%.  
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Figure A-9:  Output of a stochastic matrix model (dashed lines) for an annual plant when the 
number of seeds produced per plant (F)  and seedling recruitment (E) vary at 75% of their 
maximum possible σ values, while all other parameters vary at 25% of their maximum σs.  Mean 
annual seed survival (Ssd) is kept constant at 30%, while the three lines represent model output 
in which mean survival from the seedling stage to reproduction (Sj) is 30%, 60% and 90%.  
Solid lines represent the results from the deterministic model (as in Figure A-8). 
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Figure A-10:  Output of a stochastic matrix model (dashed lines) for an annual plant when just 
the survival from seedling to reproduction (Sj) varies at 75% of its maximum possible σ value, 
while all other parameters vary at 25% of their maximum σs.  Mean annual seed survival (Ssd) is 
kept constant at 30%, while the three lines represent models in which mean survival from the 
seedling stage to reproduction (Sj) is 30%, 60% and 90%.  Solid lines represent the results from 
the deterministic model (as in Figure A-8). 
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2) A general model for biennial/semelparous perennial plants 

 
 

 
 
Figure A-11: A life cycle diagram encapsulating the basic life history of a biennial/semelparous 
perennial plant. 
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Figure A-12: A general matrix model for a biennial/semelparous perennial plant. 
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Table A-2: Parameter values and definitions for the biennial plant model representing the 
specific case of the Chorro Creek bog thistle. 
 

Parameter Values 
used Definition 

Ssd 0.1, 0.2, 0.4 survival of germinating seeds 

Ssb na survival of seeds in seed 
bank 

g 1.0 probability a seed germinates 

E*SSL .001 – 0.3 

probability a germinating 
seed successfully establishes 
and survives its first growing 
season 

Sv .01 – 0.96 probability a vegetative 
rosette survives to flower 

fs 0.6 probability of becoming a 
small flowering plant 

fl 0.2 probability of becoming a 
large flowering plant 

p2f 0.01 probability of flowering for a 
second year 

Fs 300 number of seeds produced 
per small flowering plant 

Fl 600 number of seeds produced 
per small flowering plant 

F2f 300 number of seeds produced by 
plant in 2nd year 
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Selected model output:  

 

 
 

Figure A-13: Output of a deterministic matrix model for the Chorro Creek bog thistle using the 
parameters given in Table A-2.  The three lines represent models runs with different values of 
seed survival (Ss) at 40%, 20% and 10%.   
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Figure A-14: Output of a stochastic matrix model (dashed lines) for the Chorro Creek bog thistle 
using the parameters given in Table A-2 in which all parameters values vary at 25% of their 
maximum σ values.  The three lines represent models runs with different values of seed survival 
(Ss) at 40%, 20% and 10%.  Solid lines are results from the deterministic model (as in Figure A-
13). 
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Figure A-15: Output of a stochastic matrix model (dashed lines) for the Chorro Creek bog thistle 
using the parameters given in Table A-2, with the probability a rosette survives to flower  
varying at 75% of its maximum σ, and all other parameters vary at 25% of their maximum σ 
values.  The three lines represent model runs with different values of seed survival (Ss) at 40%, 
20% and 10%.  Solid lines are results from the deterministic model (as in Figure A-13). 
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Figure A-16: Output of a stochastic matrix model (dashed lines) for the Chorro Creek bog thistle 
using the parameters given in Table A-2, with the number of seeds produced per flowering plant 
(Fi) and the probability a seed successfully establishes (E)  varying at 75% of their maximum σ, 
and all other parameters vary at 25% of their maximum σ values.  The three lines represent 
model runs with different values of seed survival (Ss) at 40%, 20% and 10%.  Solid lines are 
results from the deterministic model (as in Figure A-13). 
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3)  A general model for perennial plants 

 

 

 

Figure A-17: Life cycle of a perennial plant. 
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Figure A-18: Model of a perennial plant. 
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Table A-3: Parameter definitions and values used in the perennial plant model. 

Parameter Values used Definition 

F 10 - 200 number of viable seeds 
produced per plant 

SSB 0.5, 0.3, 0.2 survival of seed in seed bank 

SSD SSB
(1/2) survival of germinating seeds 

R 0.001 – 0.29 Probability of successful 
seedling recruitment 

SA 0.7, 0.9 annual survival of  adult plant 

PM 0.3, 0.4 
probability a vegetative plant 
becomes reproductively 
mature  

PF 0.8 probability a reproductively 
mature plant flowers 

G1 0.5 probability a germinating seed 
becomes a vegetative plant 

G2 0 
probability a germinating seed 
becomes a reproductively 
mature plant 
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Model Output 

 

 

Figure A-19:  Output of a deterministic, stage-structured model for a perennial plant using the 
parameters given in Table A-3.  The three lines represent models runs with different values of 
seed survival (Ss) at 40%, 20% and 10%, the annual probability a vegetative plant becomes 
reproductively mature is 40% and annual survival of adult plants is 70%. 
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Figure A-20:  Output of a deterministic, stage-structured model for a perennial plant using the 
parameters given in Table A-3.  The three lines represent models runs with different values of 
annual adult survival (Sa) at 90%, 70% and 50%, the annual probability a vegetative plant 
becomes reproductively mature is 40% and annual seed survival is 30%. 
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Figure A-21:  Output of a deterministic, stage-structured model for a perennial plant using the 
parameters given in Table A-3.  The three lines represent models runs with different values of 
the probability a vegetative plant becomes reproductively mature in any given year (pM) at 50%, 
40% and 30%, the annual seed survival is 30% and annual adult survival is 70%. 
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Figure A-22: Output of a stochastic, stage-structured matrix model (dashed lines) for a perennial 
plant using the parameters given in Table A-3, with all parameters varying at 25% of their 
maximum σ values.  The three lines represent models runs with different values of seed survival 
(Ss) at 50%, 30% and 20%.  Solid lines are results from the deterministic model (as in Figure A-
19). 
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Figure A-23: Output of a stochastic, stage-structured matrix model (dashed lines) for a perennial 
plant using the parameters given in Table A-3, with the number of seeds produced per flowering 
plant (F), the probability a seed germinates (G1), and the probability a seed successfully 
establishes (R) varying at 75% of their maximum σ values, and all other parameters vary at 25% 
of their maximum σ values.  The three lines represent model runs with different values of seed 
survival (Ss) at 50%, 30% and 20%.  Solid lines are results from the deterministic model (as in 
Figure A-19). 
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Figure A-24: Output of a stochastic, stage-structured matrix model (dashed lines) for a perennial 
plant using the parameters given in Table A-3, with annual adult survival (Sa) varying at 75% of 
its maximum σ value, and all other parameters vary at 25% of their maximum σ values.  The 
three lines represent models runs with different values of seed survival (Ss) at 50%, 30% and 
20%.  Solid lines are results from the deterministic model (as in Figure A-19). 
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4)  A general model for amphibians  

 

 

 

 

Figure A-25: General life cycle for an amphibian 
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Figure A-26: General model of an amphibian 
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Table A-4: Parameter definitions and values used for the general amphibian model (based on the 
Flatwoods salamander, Ambystoma cingulatum). 

 

Parameter Values used Definition 

F 160 mean clutch size 

PB 0.4, 0.8 probability of breeding 

SE 0.75 egg survival 

S0 0.05 – 1.0 survival from egg to 
metamorph 

SJ 0.05 – 1.0 annual juvenile survival 

Sa 0.05 – 1.0 annual adult survival 

PM 
0.25, 0.5, 

0.75 

probability juvenile 
becomes reproductively 
mature 

(sex ratio) 0.5 sex ratio is 1:1 
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Model Output 

 

 

Figure A-27:  Output of a deterministic matrix model for an amphibian using parameters given in 
Table A-4.  The three lines represent different models in which the mean annual probability a 
juvenile becoming reproductively mature (Pm) is 75%, 50% and 25%, mean egg survival is 75%, 
and mean annual probability of breeding (Pb) is 80%.  
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Figure A-28:  Output of a deterministic matrix model for an amphibian using parameters given in 
Table A-4.  The three lines represent different models in which the mean annual probability a 
juvenile becoming reproductively mature (Pm) is 75%, 50% and 25%, mean egg survival is 75%, 
and mean annual probability of breeding (Pb) is 40%.  
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Figure A-29: Output of a stochastic matrix model (dashed lines) for an amphibian using 
parameters given in Table A-4, with the annual probability a juvenile becoming reproductively 
mature (Pm) varying at 75% of its maximum σ, and all other parameters vary at 25% of their 
maximum σ values.  The three lines represent different models in which the mean annual 
probability a juvenile becoming reproductively mature (Pm) is 75%, 50% and 25%, mean egg 
survival is 75%, and mean annual probability of breeding (Pb) is 40%.  Solid lines are results 
from the deterministic model (as in Figure A-28). 
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Figure A-30: Output of a stochastic matrix model (dashed lines) for an amphibian using 
parameters as given in Table A-4, with the probability of survival from the egg to  juvenile stage 
(S0) varying at 75% of its maximum σ, and all other parameters vary at 25% of their maximum σ 
values.  The three lines represent different models in which the mean annual probability a 
juvenile becoming reproductively mature (Pm) is 75%, 50% and 25%, mean egg survival is 75%, 
and mean annual probability of breeding (Pb) is 40%.  Solid lines are results from the 
deterministic model (as in Figure A-28). 
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Figure A-31: Output of a stochastic matrix model (dashed lines) for an amphibian using 
parameters given in Table A-4, with annual adult and juvenile survival (Sa, Sj) varying at 75% of 
their maximum σ, and all other parameters vary at 25% of their maximum σ values.  The three 
lines represent different models in which the mean annual probability a juvenile becoming 
reproductively mature (Pm) is 75%, 50% and 25%, mean egg survival is 75%, and mean annual 
probability of breeding (Pb) is 40%.  Solid lines are results from the deterministic model (as in 
Figure A-28). 
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5)  A general model for birds maturing at 1 year of age 

 

 

 

 

 

Figure A-32: A general life cycle of a bird maturing at 1 year of age. 
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Figure A-33: A general model for a bird maturing at 1 year of age. 
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Table A-5: Parameter definitions and values used for the model of a bird maturing at one year 
of age.  Parameters values based on the Grasshopper sparrow. 

 

Parameter Values used Definition 
Values in 
literature 

SNS 0.05 – 1.0 nest success < 0.25 to 0.5b 

NA 2, 3 
number of nesting 
attempts per year 1- 4b 

SJ 0.15, 0.3, 0.75  
survival from fledging 
to first spring 

0.35a 

SA 0.05 – 1.0 annual adult survival 0.51a 

PB 0.9 proportion breeding  

F 3.65 mean clutch size 3.25 – 4.17b 

JP 1.0, 0.5 
Scaling factor for 1st 
year breeders 
reproductive output 

 

(sex ratio) 0.5 sex ratio is 1:1  

 
aPerkins et al.  2008.  bVickery, 1996.  
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Figure A-34: Results from a deterministic stage-structured model of a Florida grasshopper 
sparrow (Table A-5), with juvenile reproductive output equal to that of adults.  In a stage-
structured model, high annual adult survival results in extremely long-lived individuals, and the 
population does not decline even with nest success as low as 5%.   
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Figure A-35: Output of an age-structured deterministic matrix model for a passerine that breeds 
in its first year of life (based on data from the Grasshopper sparrow, Table A-5) when (a) 
juvenile reproductive output is half that of an adult; and (b) equal to that of an adult.  
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Figure A-36: Output of a stochastic age-structured matrix model (dashed lines) for the Florida 
Grasshopper sparrow (parameter values given in Table A-5), with all parameters vary at 25% of 
their maximum σ values.  The three lines represent different models in which the mean annual 
survival of juvenile birds (Sj) is 60%, 30% and 15%, and juvenile reproductive output is always 
half that of adults.  Solid lines are results from the deterministic model (as in Figure A-35a). 
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Figure A-37: Output of a stochastic age-structured matrix model (dashed lines) for the Florida 
Grasshopper sparrow (parameter values given in Table A-5).  Nest success varies at 75% of its 
maximum σ value while all other parameters vary at 25% of their maximum σ values.  The three 
lines represent different models in which the mean annual survival of juvenile birds (Sj) is 60%, 
30% and 15%, and juvenile reproductive output is always half that of adults.  Solid lines are 
results from the deterministic model (as in Figure A-35a). 
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Figure A-38: Output of a stochastic age-structured matrix model (dashed lines) for the Florida 
Grasshopper sparrow (parameter values given in Table A-5).  Juvenile survival varies at 75% of 
its maximum σ value while all other parameters vary at 25% of their maximum σ values.  The 
three lines represent different models in which the mean annual survival of juvenile birds (Sj) is 
60%, 30% and 15%, and juvenile reproductive output is always half that of adults.  Solid lines 
are results from the deterministic model (as in Figure A-35a). 
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Figure A-39: Output of a stochastic age-structured matrix model (dashed lines) for the Florida 
Grasshopper sparrow (parameter values given in Table A-5).  Adult survival varies at 75% of its 
maximum σ value while all other parameters vary at 25% of their maximum σ values.  The three 
lines represent different models in which the mean annual survival of juvenile birds (Sj) is 60%, 
30% and 15%, and juvenile reproductive output is always half that of adults.  Solid lines are 
results from the deterministic model (as in Figure A-35a). 
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6) A model for a long-lived, slow maturing bird (Dark-rumped petrel) 

 

                 

 

 

 

Figure A-40: Dark-rumped petrel life cycle. 

 
 
 
 
 

( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

AJ

J

J

J

J

J

NSANSSA

SS
S

S
S

S
S

SSBSSB

00000
000000
000000
000000
000000
000000

5.05.000000 00

 

 

Figure A-41: Model for Dark-rumped petrel. 
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Table A-6: Parameter definitions and values used for the dark-rumped petrel model (a long-
lived, slow maturing bird). 
 

Parameter Range used Values in 
literature Definition 

SNS 0.05 – 1.0 0.35 – 0.72a nest success 

S0 0.05 – 1.0  survival from fledging 
to 1 year old 

SJ 0.7 – 0.9 0.8 a annual survival of 
juvenile 

SA 0.75 – 0.95 0.8 – 0.93 a annual adult survival 

BSA 0.89 0.89 a probability sub-adult 
breeds 

BA 0.89 0.89 a probability adult 
breeds 

(maturation 
age) 6 years old 6 years olda age at reproductive 

maturity 

(sex ratio) 1:1  sex ratio 

 
a Simons, 1984    
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Model Output 

 

 

Figure A-42: Comparing the effect of nest success and annual adult survival on the output of an 
age-structured deterministic matrix model for a long-lived, slow to mature bird (based on data 
from the Dark-rumped petrel, Table A-6).  The different lines represent model output for 
different values of mean survival from fledging to one year old (S0 of 75%, 50% and 25%). 
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Figure A-43: Comparing the effect of nest success and survival from fledging to 1 year of age on 
the output of an age-structured deterministic matrix model for a long-lived, slow to mature bird 
(based on data from the Dark-rumped petrel, Table A-6).  The lines represent model output for 
changing values of mean annual adult survival (Sa) of 95% and 90%. 
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Figure A-44: Output of a stochastic age-structured matrix model (dashed lines) for the Dark-
rumped petrel (Table A-6).  Nest success and survival from fledging to 1 year of age vary at 75% 
of their maximum σ values while all other parameters vary at 25% of their maximum σ values.  
The two lines represent different models in which the mean annual survival of adult birds (Sa) is 
95% and 90%.  Solid lines are results from the deterministic model (as in Figure A-43). 
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Figure A-45: Output of a stochastic age-structured matrix model (dashed lines) for the Dark-
rumped petrel (Table A-6).  Annual adult and juvenile survival vary at 75% of their maximum σ 
values while all other parameters vary at 25% of their maximum σ values.  The two lines 
represent different models in which the mean annual survival of adult birds (Sa) is 95% and 
90%.  Solid lines are results from the deterministic model (as in Figure A-43). 
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7)  A model for a long-lived, slow maturing turtle (the bog turtle) 

 

 

 

 

Figure A-46: Life cycle for the bog turtle. 
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Figure A-47: Model for bog turtle. 
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Table A-7: Parameter definitions and values used for the bog turtle model. 
 

Paramete
r 

Values used 
Values in 
literature 

Definition 

S0 0.1 - 1.0 0 - 0.74a 
0.47 - 0.411 e 

survival from egg to 
hatchling emergence from 

nest 

SH 0.3 - 0.7  
hatchling survival (1st year 

above ground) 

SJ 
0.5(SA); 
0.75(SA); 
1.0(SA) 

0.753 - 0.921 e annual juvenile survival 

SA 0.1 - 1.0 
0.932 b 

0.775 - 0.957 e 
annual adult survival 

PB 0.7 - 0.9 d 0.7 - 0.9 d proportion breeding 

F 3 1 - 5 c mean clutch size 

(maturatio
n age) 

10 years old c  age at reproductive maturity 

(sex ratio) 0.5  sex ratio 1:1 

aCarroll and Ultsch, 2007;  bConverse et al 2005;  cUSFWS, 2001;  dGriffen, 2007;  e Iverson, 1991 
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Model Output 

 
 

 
 

Figure A-48: Comparing the effect of annual adult survival and survival from egg to hatchling 
emergence on the output of an age-structured deterministic matrix model for a long-lived, slow 
to mature turtle (based on data from the Bog turtle, Table A-7).  The lines represent model output 
for changing values of mean hatchling survival (Sh) of 75%, 50% and 25%. 
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Figure A-49: Comparing the effect of hatchling survival and survival from egg to hatchling 
emergence on the output of an age-structured deterministic matrix model for a long-lived, slow 
to mature turtle (based on data from the Bog turtle, Table A-7).  The lines represent model output 
for changing values of mean annual adult survival (Sa) of 95% and 90%  and mean annual 
juvenile survival is 0.8*Sa. 
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Figure A-50: Comparing the effect of hatchling survival and survival from egg to hatchling 
emergence on the output of an age-structured deterministic matrix model for a long-lived, slow 
to mature turtle (based on data from the Bog turtle, Table A-7).  The lines represent model output 
for changing values of mean annual adult survival (Sa) of 95% and 90%  and mean annual 
juvenile survival is 0.85*Sa. 
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Figure A-51: Output of a stochastic age-structured matrix model (dashed lines) for a long-lived, 
slow to mature turtle (based on data from the Bog turtle, Table A-7), in which all parameters 
vary at 25% of their maximum σ values.  The lines represent model output for changing values 
of mean annual adult survival (Sa) of 95% and 90%.  Solid lines are results from the 
deterministic model (as in Figure A-50). 
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Figure A-52: Output of a stochastic age-structured matrix model (dashed lines) for a long-lived, 
slow to mature turtle (based on data from the Bog turtle, Table A-7).  Hatchling survival (S0) 
and survival from egg to hatchling emergence (Sh) vary at 75% of their maximum σ values while 
all other parameters vary at 25% of their maximum σ values.  The lines represent model output 
for changing values of mean annual adult survival (Sa) of 95% and 90%  and mean annual 
juvenile survival is 0.85*Sa.  Solid lines are results from the deterministic model (as in Figure A-
50). 
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Figure A-53: Output of a stochastic age-structured matrix model (dashed lines) for a long-lived, 
slow to mature turtle (based on data from the Bog turtle, Table A-7).  Annual adult (Sa) and 
juvenile survival (Sj) vary at 75% of their maximum σ values while all other parameters vary at 
25% of their maximum σ values.  The lines represent model output for changing values of mean 
annual adult survival (Sa) of 95% and 90%  and mean annual juvenile survival is 0.85*Sa.  Solid 
lines are results from the deterministic model (as in Figure A-50). 
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8)  A general model for small mammals 

 
 
 

 
 

Figure A-54: General life cycle for a small mammal. 
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Figure A-55: General model for a small mammal. 
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Table A-8: Parameter definitions and values used for the model of a small mammal, with 
parameters values used in the model based on Stephen’s kangaroo rat. 
 

Parameter Values used Definition 
Values in 
literature 

S0 0.25, 0.5, 0.75 
survival of 0-1 month 
old pups 

0.25a, 0.39 a, 
0.43b 

SJ 
(0.5*SA), 
(0.8*SA)  

monthly survival of 
juveniles 

0.35a 

SA(NB) 0.05 – 1.0 
monthly adult survival 
in non-breeding 
season 

0.18 – 0.59a 

SA(B) 0.05 – 1.0 
monthly adult survival 
in breeding season 

0.18 – 0.59a 

F 2 mean litter size 1.5 – 2.67a,c 

(sex ratio) 0.5 sex ratio is 1:1  

(breeding 
season) 9 months breeding season  “rainy season”a 

  

 a Price and Kelly, 1994; bLackey, 1967; c Randall, 1991  
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Workshops at National Professional Conferences 
 
1. The Wildlife Society Annual Conference, Miami, FL, November 2008 

On November 8, 2008 Drs. E. O. Garton, J. S. Horne, and L. S. Mills presented a 
workshop, “Using Sensitivity Analysis of Population Viability Models to Guide Management 
Decisions,” at The Wildlife Society Annual Conference in Miami, Florida.  The objectives of the 
workshop were to: (1) review how population viability models (analysis) can be used to inform 
conservation and management decisions and (2) describe recent developments in PVA that allow 
prioritization of research and management under widely varying levels of empirical knowledge 
of the species of interest. When very little is known about the focal species, we introduced a new 
approach that leverages information from similar, well-studied species to initiate and inform an 
adaptive management program for the focal species.  For species that have been monitored for 
several years producing time-series of abundance data, we described several stochastic growth 
models that can be fit to these data and when coupled with environmental covariates, can be used 
to predict population dynamics under different management scenarios.  Finally, when a great 
deal of empirical data exists to parameterize a matrix-based projection model (single population 
and metapopulation), we discussed several approaches to sensitivity analysis of these models. 
Depending on research objectives, results from a rigorous sensitivity analysis can be used to both 
prioritize future research and evaluate the effect of different management actions on species 
viability. 

This workshop was attended by 21 natural resource managers and research professionals 
who were interested in learning these new approaches. Attendees were exposed to recently 
developed web-sites and software that will aid implementation of the approaches.  Each 
participant received a ~50-page binder detailing all material presented and a CD containing 
copies of new software authored by the organizers as well as pdfs of relevant papers.  Workshop 
materials are included in electronic Appendix C. 

 
2. National Military Fish and Wildlife Association, Washington, DC, March 2009 

We hosted a technical session and workshop at the National Military Fish and Wildlife 
Association meeting in Washington, D.C. on 20 March 2009. The format was a joint technical 
session providing an overview of a variety of conservation and management tools developed 
under SERDP funding. The session included individual presentations about the three approaches 
developed under our project as well as the Effective Area Model developed by Drs. Leslie Ries 
and Tom Sisk (SI-1597), and the HEXSIM software developed by Drs. Betsy Bancroft, Josh 
Lawler, and others (SI-1541). Following the session, we offered a two-hour workshop for 
attendees interested in learning to use the web-sites and software introduced in the technical 
session. About 20 people participated and we are talking with NMFWA leadership about 
organizing a similar session at a future meeting. 
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3. The Wildlife Society Annual Conference, Monterey, CA, September 2009 
 
With Mr. Chris Eberly, director of DoD Partners in Flight, we coordinated a symposium at the 
annual conference of The Wildlife Society addressing the topic “Conservation-Reliant Species: 
Our New Relationship with Nature.”   Nine presentations by endangered species experts 
included: 
 

Conservation reliant species in a time of change. Michael J. Scott 

Rethinking recovery under the Endangered Species Act in a conservation-reliant world. 
Dale D. Goble 

Conservation-reliant big game: The critical aspects of management. Paul Krausman 

Managing the Mission and Endangered Species at Marine Corps Base Camp Pendleton. 
Beth Forbus, William H. Berry, Eric Kershner 

Conservation-reliant birds of Hawaii: Alien species, disease, and climate change. J. 
Michael Reed, David W. DesRochers, Eric VanderWerf, J. Michael Scott 

Conservation of the California Condor: Are self-sustaining populations possible. Jesse 
Grantham, Jeffrey R. Walters, Matthew Johnson 

How does a completely conservation-reliant species ever recover under the Endangered 
Species Act? Lessons from the Kirtland’s Warbler. Carol Bocetti 

Are some game species conservation reliant species? Edward O. Garton 

Application of post-recovery management principles to maintenance of species at risk. 
Erica Fleishman 

 
The recovery and delisting of threatened or endangered species has traditionally been achieved 
when species-specific management is no longer necessary. However, the magnitude and pace of 
human impacts on the environment may require a definition of recovery that includes some form 
of species-specific post-recovery management. Many listed species rely on management 
intervention for which a threat cannot be eliminated, only controlled. Recovery of these 
conservation-reliant species can be achieved in numbers and distributions consistent with 
recovery goals, but will require a new model of recovery planning. This symposium will present 
the concept of conservation-reliant species and will explore a number of species along the 
conservation reliance continuum. The Symposium will also look at the factors that influence the 
species and their potential for recovery. 
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4. SERDP-ESTCP Partners in Environmental Technology Technical Symposium, December 
2008 
 
Dr. J. Michael Scott and Dr. John Hall coordinated a technical session at the 2008 SERDP-
ESTCP Partners in Environmental Technology Technical Symposium.  Titled “Science 
Underlying the Post-Recovery Management of Listed Species,” the session was chaired by Dr. 
Deborah Crouse of the U.S. Fish and Wildlife Service, with Dr. Scott delivering the keynote 
address.   The overall topic of the session was the underlying science issues involved with the 
post-recovery management of listed species, from those that require little continued intervention 
to maintain their populations to those that might require long-term management attention.   
Individual presentations included: 

Introduction and Wrap-up:  Dr. Deborah Crouse, U.S. Fish and Wildlife Service / 
Division of Endangered Species 

Keynote:  Humanity's New Relationship with Nature: Conservation-Reliant Species, Dr. 
J. Michael Scott, U.S. Geological Survey / University of Idaho  

How to Achieve Post-Recovery Habitat Management for a Completely Conservation-
Reliant Species: A New Paradigm for the Kirtland's Warbler.  Dr. Carol Bocetti, 
California University of Pennsylvania / Department of Biological and 
Environmental Sciences 

 Case Study of the Karner Blue Butterfly: An Example of the Importance of Host Species 
Management in Post-Recovery Management.  Dr. Ralph Grundel, U.S. Geological 
Survey / Great Lakes Science Center, Lake Michigan Ecological Research Station 

Carrying Conservation Forward: Post-Recovery Management and Monitoring for 
Eggert's Sunflower (Helianthus eggertii).   Mr. Geoff Call, U.S. Fish and Wildlife 
Service / Cookeville Field Office 

 Aleutian Cackling Goose Recovery: From the Brink of Extinction to Becoming Just 
Another Migratory Goose.  Mr. Vernon Byrd, U.S. Fish and Wildlife Service / 
Alaska Maritime National Wildlife Refuge 

 Application of Science Principles for Post-Recovery Management of Listed Species to 
At-Risk Species.  Dr. Erica Fleishman, University of California, Santa Barbara / 
National Center for Ecological Analysis and Synthesis 
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Site-Specific Conferences 
 
Yakima Training Center, Yakima, Washington, March 2009 

On 26 March 2009 Drs. Oz Garton, Jon Horne, Katherine Strickler, J. Michael Scott, and 
Brian Dennis presented a workshop, "Tools for Assessing Population Trend and Viability in 
Greater Sage-grouse," at Yakima Valley Community College in Yakima, Washington. The 
objectives of the workshop are to: 1) review methods of estimating population trend and 
sensitivity, 2) introduce software programs developed at University of Idaho to estimate 
population viability (PopGrowth and MetaPVA), 3) present results of sage-grouse population 
trend and viability analyses for Yakima Training Center, and 4) obtain feedback from 
participants regarding software products and analyses. The workshop was attended by seven 
members of the YTC environmental staff as well as biologists from U.S. Fish and Wildlife 
Service and the Yakama Nation. Each participant received a ~70-page binder detailing all 
material presented, a PopGrowth tutorial, and a CD containing copies of the PopGrowth 
software. It was an informal setting characterized by tremendously productive discussions of 
important sage-grouse issues facing YTC, FWS, and tribal managers. Sage-grouse are a state-
listed species in Washington and their continuing decline has high potential to constrain training 
at YTC. After learning more about the software and reviewing our results, YTC environmental 
staff identified additional management concerns they would like help with and expressed interest 
in continuing to work with our team to quantify the effects of training and recovery activities on 
sage-grouse at YTC and in Washington as a whole.  Workshop materials are included in 
electronic Appendix C. 

  

 163



   

Presentations at Scientific Meetings and Conferences 
 

1. NATIONAL MILITARY FISH AND WILDLIFE ASSOCIATION, PORTLAND, OR, 
MARCH 2007 

TITLE:  NEW TOOLS FOR ASSESSING THE EFFECTS OF TRAINING AND 
MANAGEMENT ON LISTED SPECIES ON DEPARTMENT OF DEFENSE LANDS 

AUTHORS:  J. Michael Scott, USGS; L. Scott Mills (presenting author), University of 
Montana; E.O Garton, University of Idaho; Matthew Kauffman, University of Wyoming; 
Cynthia Hartway, University of Montana; Jon Horne, University of Idaho; Katherine 
Strickler, University of Idaho 

ABSTRACT:  Military managers are increasingly faced with challenges of balancing 
endangered species conservation with military missions and the need for training 
readiness.  While military agencies do not establish recovery goals for listed species, 
training activities must not impede the recovery of listed species that occur on or near 
training areas.  In many cases, military managers are uniquely situated to enhance local 
populations of endangered species.  Department of Defense (DoD) lands cannot recover 
endangered species alone but they can facilitate more robust populations that will allow 
more flexible training options.  This challenge is often complicated by two related 
limitations: a) incomplete information about endangered species that precludes 
conducting quantitative, complex viability analyses to assess the effects of training or 
conservation activities on populations of listed species on DoD lands; and b) the lack of 
user-friendly software to prioritize data needs and guide users through a population 
viability analysis dependent on available biological information as well as potential 
management activities and training scenarios. 

We are developing a scientifically-based system of tools and protocols that will help DoD 
managers meet population goals for listed species and assess the effects of training 
options on these species, while continuing to support military missions. A key element of 
our approach is to develop tools for population recovery that, for a given species, are 
appropriate to the amount of biological data available.   

The overall objective of this program is to provide managers with a set of alternative 
approaches that can be used to estimate extinction risk or prioritize management actions 
that simultaneously meet population goals while facilitating goals of military training.  
Under this approach, resource managers will use existing data on listed species to select 
the optimum approach for analyzing population responses to management activities and 
environmental variables.  The selected analysis and modeling approach will then be 
combined with information on important threats to the species, potential management 
options and their associated costs, and key demographic and topographic parameters to 
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project population consequences of selected management options.  These projections will 
provide a sound basis for managers to consult with USFWS and NOAA Fisheries to 
implement training and management actions and monitor the population response of 
listed species.  

Specifically, the optimum approach for each species will be selected from an array of 
alternative approaches.  For little-known species having insufficient data to parameterize 
a population viability model, we will provide protocols for management prioritization 
based on our “Life History Typology” (LHT) analysis.  We base the LHT analysis on an 
extensive database and meta-analysis in which we determine, for well-studied species, 
the proportional effect each vital rate has on population growth (e.g. elasticity), the 
amount each vital rate changes in nature (process variance), and the extent to which 
particular management perturbations can change vital rates (vulnerability).  The 
typologies, or generalizations across taxonomic groups or management actions for these 
well-studied species, will provide the basis for ranking management actions for 
endangered species on DoD sites for which data are lacking.   

For better-studied species, population viability models can be used to assess the impact of 
training/management activities on species recovery.  However, empirical data used to 
populate these models can range from a simple time-series of relative abundance to 
spatially explicit information on metapopulation structure and dynamics.  Similarly, 
models for analyzing population viability range from simple deterministic single 
population models to stochastic single population models to spatially explicit stochastic 
metapopulation and individual-based models.  Our analysis will a) identify what types of 
empirical data are critical for estimating species viability and b) determine what level of 
model complexity is needed in order to determine the effect of site-specific management 
scenarios on overall species viability.  We will also be developing analytical software 
suitable for use by DoD biologists on individual species assessments for their respective 
military installations. 

We will test the analytical approach and software with empirical data for four listed 
species that are currently of management concern on DoD lands.  We will also use the 
approach to validate our methods and evaluate the factors most responsible for recovery 
of several species that have been de-listed or down-listed.  Finally, we will work with 
DoD biologists, managers and other stakeholders to develop and test the LHT approach 
and spatial analyses using site-specific empirical examples, and present training sessions 
for DoD biologists at national and regional meetings. 

The products of the proposed research will include:  1) a database of life history 
typologies for species representing a broad range of taxonomic groups, life history 
characteristics and management sensitivities that will provide information to develop 
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rules of thumb for the response of species to training activities and proposed management 
and conservation actions; 2) quantitative predictions as to the influence a single 
population (i.e., military installation) will have on overall population persistence given a 
variety of metapopulation structures and dynamics; 3) user-friendly analytical software to 
assist DoD biologists in assessing the potential impacts of training activities on 
populations and metapopulations and in meeting population goals for listed species; and 
4) training for DoD biologists in the use of the database and analytical software and 
assistance in making more efficient and biologically defensible decisions regarding the 
impacts of DoD actions on listed species.  The proposed research will assist DoD natural 
resource and operations managers in focusing conservation and impact mitigation 
measures so that they have greater ability to decrease constraints on training activities 
imposed by legal requirements to protect listed species present on bases. 

 

 

2. 26TH WESTERN AGENCIES SAGE AND COLUMBIAN SHARP-TAILED GROUSE 
WORKSHOP, MAMMOTH LAKES, CA, JUNE 2008 

TITLE:  ALLEE AND RICKER EFFECTS ON PERSISTENCE OF GREATER SAGE 
GROUSE POPULATIONS 

AUTHORS:  E.O. Garton, University of Idaho; Jon S. Horne, University of Idaho;  
Katherine M. Strickler, University of Idaho;  Ann Moser, Idaho Department of Fish and 
Game; Brian Dennis, University of Idaho;  J.W. Connelly, Idaho Department of Fish and 
Game; Michael A. Schroeder, Washington Department of Fish and Wildlife; J. Michael 
Scott, USGS.  

ABSTRACT:  The Allee effect, or declining per capita growth rates at low population 
sizes, could negatively impact the persistence of declining populations of Greater Sage 
Grouse while the Ricker effect, declining per capita growth rates at higher population 
sizes produces an objective carrying capacity for stable or increasing populations. We 
estimated the parameters of a discrete time, stochastic growth model incorporating both 
the Allee and Ricker effects from annual lek counts in the Snake River Plain, Idaho and 
eastern Washington 1965-2003. These data provide highly significant evidence for both 
the Allee and Ricker effects in sage grouse populations. The model provides clear 
criterion for defining a lower threshold for numbers attending leks below which the 
populations are likely to decline to extinction. Using this threshold and estimated 
parameters for the stochastic growth model we could evaluate the probability of 
persistence or extinction of populations and metapopulations of sage grouse throughout 
their range. Applying the model to populations varying stochastically at the upper end of 
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the abundance continuum provides a way to evaluate factors influencing carrying 
capacity of grouse. Sensitivity analysis can be applied to this model and to stage-
structured models of sage grouse populations to identify management actions most likely 
to reverse the long-term declines of the species throughout the west and predict the 
probable impacts of global climate change.  

 

3.  SOCIETY FOR CONSERVATION BIOLOGY, CHATTANOOGA, TN, JULY 2008 

TITLE:   ESTIMATING ECOLOGICAL TREND: WHICH MODEL SHOULD I USE?  

AUTHORS:  Brian Dennis (presenting author), University of Idaho; Jean-Yves Humbert, 
ART Research Station, Zurich; L. Scott Mills, University of Montana; Jon S. Horne, 
University of Idaho  

ABSTRACT:  Regression of log-abundance of a population versus time is often used to 
estimate the population's trend. It is not widely realized that such regression carries 
implicit assumptions about how the trend and the variability in the population abundances 
arise. If the statistical model does not adequately describe the process by which the data 
are produced, the trend estimate can be seriously in error. Here we describe three models 
for estimating population trend. The three are different stochastic versions of the 
exponential growth model: (1) observation error only, (2) environmental process noise 
only, and (3) a state space model which combines both observation error and process 
noise. We describe the statistical methods for obtaining parameter estimates, including 
estimates of trend, for time series abundance data under each of the three models. 
Logabundance regression turns out to correspond to deterministic exponential growth 
with observation error only, that is, model (1). 

 

4. SOCIETY FOR CONSERVATION BIOLOGY, CHATTANOOGA, TN, JULY 2008 

TITLE:  IS MY POPULATION RECOVERING, DECREASING, OR STATIONARY? 
IMPROVING THE STATUS QUO FOR ESTIMATING EXPONENTIAL TREND 
FROM COUNT DATA  

AUTHORS:  L. Scott Mills (presenting author), University of Montana; Jean-Yves 
Humbert, ART Research Station, Zurich; Jon S Horne, University of Idaho; Brian 
Dennis, University of Idaho  

ABSTRACT:  An estimate of the trend, or population growth rate, is perhaps the most 
fundamental piece of information necessary for diagnosing and recovering any species of 

 167



   

concern. Managers and researchers commonly use simple series of abundance data 
collected over time, without count covariates and ignoring density dependence, to address 
the question: "How well is my population doing?". We use simulations to evaluate two 
commonly-used and one new method to estimate trend parameters (mean and standard 
error). Surprisingly, we find that the most-commonly used method -- a linear regression 
of log-transformed count values plotted against time - shows mediocre performance 
under realistic conditions with both environmental noise and observation error affecting 
the trend in the time series. The new state space model, which accounts for both forms of 
variation, performs well in all cases, no matter whether observation error only, 
environmental variation only, or both are present. These results hold even with missing 
observations in the time series. We conclude that the dominant paradigm for estimating 
simple exponential growth through a log-linear regression be strongly tempered by a 
more thoughtful consideration of its fundamental assumptions. Further, for a fixed budget 
for field data collection to estimate trend, we recommend directing more effort into 
fewer, better estimates of abundance, even if some years of sampling must be skipped. 

 

5. SOCIETY FOR CONSERVATION BIOLOGY, CHATTANOOGA, TN, JULY 2008 
 

TITLE:  METAPOPULATION VIABILITY OF THE GOLDEN-CHEEKED 
WARBLER UNDER A CONSERVATION INCENTIVE PROGRAM  
 
AUTHORS:  Katherine M. Strickler (presenting author), University of Idaho; Jon S 
Horne, University of Idaho  
 
ABSTRACT:  Conservation incentive programs seek to balance the need to manage 
endangered species on private lands with concerns about private property rights and 
conservation costs. We conducted a metapopulation viability analysis to evaluate and 
inform a conservation incentive program initiated by the Department of Defense, the 
Recovery Credit System (RCS) for golden-cheeked warblers (GCWA, Dendroica 
chrysoparia) on Fort Hood, Texas. The RCS provides Fort Hood with recovery credits 
for funding conservation of GCWA habitat on private lands. Recovery credits 
accumulated by Fort Hood through contracts with private landowners would be used to 
offset any unanticipated loss of GCWA habitat within the boundaries of the installation. 
The success of the RCS hinges on the idea that any loss of habitat on Fort Hood can be 
offset by conserving off-post habitat of equal recovery value. Our objective for this 
analysis was to quantify the importance of off-post habitat patches for the GCWA 
metapopulation. We developed software to model metapopulation dynamics and apply 
recently introduced methods for sensitivity analysis of complex models. Using available 
demographic and habitat data, we quantified the relative importance of within- vs. 
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among-patch parameters to population persistence as well as quantifying the relative 
importance of various patches within the metapopulation. Our results will help determine 
the recovery value of individual patches in the GCWA RCS. 

 

6.  SOCIETY FOR CONSERVATION BIOLOGY, CHATTANOOGA, TN, JULY 2008 

TITLE:  USING GENERALIZATIONS DEVELOPED FROM EXISTING 
DEMOGRAPHIC DATA TO GUIDE MANAGEMENT FOR DATA-POOR SPECIES  

AUTHORS:  Cynthia Hartway (presenting author), University of Montana; L. Scott 
Mills, University of Montana; Matthew Kauffman, University of Wyoming  

ABSTRACT:  Lack of data presents a significant barrier to designing effective 
management plans for sensitive species. Management interventions are costly and time 
consuming, yet managers must often make decisions without good evidence that their 
efforts will increase population performance. Can the demographic responses of past 
efforts and perturbations guide the management of data-poor species? We addressed this 
question by conducting meta-analyses on data culled from 147 studies to determine the 
ability of six common management practices to increase survival and reproduction across 
multiple taxa. Results indicate that broad generalizations can be made about the 
effectiveness of some management actions. For example, studies of bird reproductive 
success indicates that, on average, predator removal programs increase nest success by 
41%, whereas habitat alteration through controlled burning increases nest success by 
20%, and cessation of grazing generally has no effect. Furthermore, in some cases, 
variability in the demographic effect of management can be explained by ecological 
factors: nest success of tree-nesting birds experience a significantly greater boost 
following predator removals than do ground-nesting species. These meta-analyses results 
can be combined with demographic models to prioritize on-the-ground actions that most 
efficiently increase population growth and persistence for species of concern. 
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7. ECOLOGICAL SOCIETY OF AMERICA ANNUAL MEETING, MILWAUKEE, WI, 
AUGUST 2008 

TITLE:  ESTIMATING ECOLOGICAL TREND: WHICH MODEL SHOULD I USE? 

AUTHORS: Brian Dennis (presenting author), University of Idaho; Jean-Yves Humbert, 
ART Research Station, Zurich; L. Scott Mills, University of Montana; Jon S. Horne, 
University of Idaho 

ABSTRACT:  Regression of log-abundance of a population versus time is often used to 
estimate the population's trend.  It is not widely realized that such regression carries 
implicit assumptions about how the trend and the variability in the population abundances 
arise.  If the statistical model does not adequately describe the process by which the data 
are produced, the trend estimate can be seriously in error.  Here we describe three models 
for estimating population trend.  The three are different stochastic versions of the 
exponential growth model:  (1) observation error only, (2) environmental process noise 
only, and (3) a state space model which combines both observation error and process 
noise. We describe the statistical methods for obtaining parameter estimates, including 
estimates of trend, for time series abundance data under each of the three models.  Log-
abundance regression turns out to correspond to deterministic exponential growth with 
observation error only, that is, model (1). 

 

8. ECOLOGICAL SOCIETY OF AMERICA ANNUAL MEETING, MILWAUKEE, WI, 
AUGUST 2008 

TITLE:  WHAT STATISTICS DO LITERATE ECOLOGISTS NEED TO LEARN, 
AND IS THERE A BEST WAY TO LEARN THEM? 

AUTHORS:  Aaron M. Ellison (presenting author), Harvard University; Brian Dennis, 
University of Idaho.  

ABSTRACT:  Twenty-first century Ecology requires statistical literacy. Observational 
studies routinely gather multivariate data at many spatiotemporal scales and experimental 
studies routinely include multiple blocked and nested factors. Our journals are replete 
with likelihood and state-space models, Bayesian and frequentist inference, and complex 
multivariate analyses, and publish papers on statistical theory and methods. We test 
hypotheses, model data, and forecast future environmental conditions. And many 
statistical methods cannot be automated in software packages. Developing statistical 
literacy among ecologists requires overcoming challenges in recognition and 
understanding. First, we must recognize that fundamental ecological theories are best 
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phrased in terms of stochastic differential-equation models, but our textbooks have not 
yet caught up with these models. Second, we must understand statistical modeling well 
enough to construct, or collaborate with statisticians who construct, nonstandard 
statistical models and apply various types of inference – estimation, hypothesis testing, 
model selection, and prediction – to our models and scientific questions. How can 
ecologists successfully meet these challenges when teaching and learning statistics?  
Ecologists must first appreciate that statistics is a mathematically-based research 
discipline and that statistical tools evolve; it is neither a static entity nor an off-the-shelf 
toolkit. Some ecologists will keep up with the statistical literature and keep their students 
and colleagues abreast of changes in the field. Others will establish fruitful collaborations 
with these statistically-aware ecologists or with professional statisticians. We expect that 
the collaborative approach will be more common. Thus, we suggest that literate 
ecologists at a minimum should master core statistical concepts, including probability and 
likelihood, principles of data visualization and reduction, fundamentals of sampling and 
experimental design, the difference between design-based and model-based inference, 
model formulation and construction, and basic programming. Because mathematics is the 
language of statistics, familiarity with essential mathematical tools – matrix algebra and 
especially calculus – is a must and will facilitate collaborations between ecologists and 
statisticians. Our experience suggests that statistical concepts are best illustrated in 
computational laboratories using a diversity of real datasets whose analysis requires 
different models and approaches. Students must learn statistical concepts before their 
study designs have been finalized and the data have been collected. Pilot studies are ideal 
case-studies to use to illustrate statistical concepts, and their analysis can lead to 
refinements in full-scale design and subsequent analysis. Our experience suggests that 
students benefit most from statistics courses taught jointly by teams of statisticians and 
ecologists. 

 

9. XIth INTERNATIONAL GROUSE SYMPOSIUM, WHITEHORSE, YUKON 
TERRITORY, CANADA, SEPTEMBER 2008 

TITLE:  ALLEE AND RICKER EFFECTS ON PERSISTENCE OF GREATER SAGE 
GROUSE POPULATIONS 

AUTHORS:  E.O. Garton, University of Idaho; Jon S. Horne, University of Idaho;  
Katherine M. Strickler, University of Idaho;  Ann Moser, Idaho Department of Fish and 
Game; Brian Dennis, University of Idaho;  J.W. Connelly, Idaho Department of Fish and 
Game; Michael A. Schroeder, Washington Department of Fish and Wildlife; J. Michael 
Scott, USGS.  
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ABSTRACT:  The Allee effect, or declining per capita growth rates at low population 
sizes, could negatively impact the persistence of declining populations of Greater Sage 
Grouse (Centrocercus urophasianus) while the Ricker effect, declining per capita growth 
rates at higher population sizes produces an objective carrying capacity for stable or 
increasing populations. We estimated the parameters of a discrete-time, stochastic growth 
model incorporating both the Allee and Ricker effects from annual lek counts in the 
Snake River Plain, Idaho and eastern Washington 1965- 2003. These data provide highly 
significant evidence for both the Allee and Ricker effects in sage grouse populations. The 
model provides clear criterion for defining a lower threshold for numbers attending leks 
below which the populations are likely to decline to extinction. Using this threshold and 
estimated parameters for the stochastic growth model we could evaluate the probability 
of persistence or extinction of populations and metapopulations of sage grouse 
throughout their range. Applying the model to populations varying stochastically at the 
upper end of the abundance continuum provides a way to evaluate factors influencing 
carrying capacity of grouse. Sensitivity analysis can be applied to this model and to 
stage-structured models of sage grouse populations to identify management actions most 
likely to reverse the long-term declines of the species throughout the west and predict the 
probable impacts of global climate change.  

 

10. AMERICAN ORNITHOLOGISTS’ UNION, ONE HUNDRED AND TWENTY 
SEVENTH STATED MEETING, PHILADELPHIA, PA, AUGUST 2009 

TITLE:  CONSERVATION RELIANT SPECIES: OUR NEW RELATIONSHIP WITH 
NATURE 

AUTHOR:   J. Michael Scott, USGS 

ABSTRACT:  The recovery (delisting) of a threatened or endangered species is often 
accompanied by the expectation that conservation management of the species will no 
longer be necessary. However, the magnitude and pace of human impacts on the 
environment make it unlikely that substantial progress will be made in delisting many 
species unless the definition of "recovery" includes some form of active management. 
Preventing de-listed species from again being at risk of extinction may require 
continuing, species-specific management actions. I characterize such species as 
"conservation-reliant", and suggest that viewing "recovery" as a continuum of states 
rather than as a simple "recovered/not recovered" dichotomy may enhance our ability to 
manage such species within the framework of the Endangered Species Act. With ongoing 
loss of habitat, disruption of natural disturbance regimes, and the increasing impacts of 
non-native invasive species, it is probable that the number of conservation-reliant species 
will increase. 
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DETAILED TOPICAL OUTLINE 
 

 

Approximate Schedule 
8:00 am 

Welcome and introduction 
8:15 am 

L. Scott Mills: Population Viability Models:  History of concept and approaches 
Count-based (Jon S. Horne) 

   Density independent growth 
    Observation error 
    Process noise 
    State-space (observation error and process noise) 
   Density dependent growth 
    Ricker (logistic) 
    Gompertz 
    Theta-logistic 
   Models with environmental covariates 
  Demographic-based Growth models (E. O. Garton) 
   Deterministic single population (DSP) matrix models 
   Stochastic single population (SSP) matrix models 
   Stochastic metapopulation (SMP) matrix models 
10:00 am 

BREAK 
10:15 am 

LSM: Methods for Sensitivity Analysis of Ecological Models 
  Classic approaches 
   Manual perturbation 
   Sensitivity and Elasticity 
   Life Table Response Experiment 
  Variance Partitioning (EOG):  
   Life Stage Simulation Analysis (LSM) 
   Standardized Regression Coefficients 

Sobol Indices 
   Fourier Amplitude Sensitivity Test (FAST) 
10:45 am 

JSH: Analytical Tools 
 Recovery Action Prioritization (RAP sheets)  (LSM) 

PopGrowthAnalysis 
 RAMAS Metapop (GRIP) 
 MetaPVA 
 
11:20 am 

Examples: Sensitivity Analysis of Population Models 
Case study: Wolves and Elk in Yellowstone (EOG) 

  Case Study: Evaluating patch importance for golden-cheeked warblers (JSH) 
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Population Viability Models 
 

Concept:  History 
Brief historical tour of PVA concept (see Mills et al. 2005, Ch. 12 Mills 2007): 
 
Minimum Viable Population 

1) Leopold (1933:47):importance of recognizing “the minimum number of 
individuals which may successfully exist as a detached population.”   

2) MVP popularized by injunction from US Congress (NFMA of 1976) to US Forest 
Service: maintain “viable populations” of all native vertebrate species in each National 
Forest. 

3) From being a legal / philosophical concept to scientific inquiry:  
By late 60’s / early 70’s: two relevant (but independent) avenues: 
a. demographic (MacArthur and Wilson 1967, Richter-Dyn and Goel 1972) : 

Critical “floors” for population size, below which population would quickly go 
extinct.  Classic: Shaffer’s work on grizzly bear MVP based purely on demo. & 
environmental stochasticity. (1983, 1985). 

b. Genetic issues 
Frankel (1974): Emphasized need and conditions for maintaining evolutionary 
potential of species:  “The prime parameters are the level and distribution of 
variation, the size of the minimum viable population, and the optimal and minimal 
sizes of reserves.  We need to know the minimum population size which is likely 
to yield a required level of variation.” 
 

4) Soulé and Wilcox (1980): first specific recommendations for MVP led to famous 
50:500 rule. 

a. 50:  minimum Ne to protect against short-term loss of fitness due to 
inbreeding, based on empirical observations 

Caveats that were often lost: 
o Ne, not N (Ne typically 1/5 to 1/3 N). 
o short term guideline for captive breeding and similar “holding 

operations”, not to the long term survival of wild populations which 
would have many other factors affecting their persistence. 

o based purely on genetic factors, not incorporating the other factors 
that would again increase the minimum necessary size for persistence. 

b. 500: estimated minimum genetic Ne where loss of additive genetic variation 
of a quantitative character due to genetic drift would be balanced by new 
variation due to mutations.  � Range up to 5,000 or more. 

 
MVP is problematic for both philosophical and scientific reasons.   
 a) point estimate vs embracing uncertainty 
 b) ecologically effective versus minimally viable.  
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Population Viability Analysis 

a. Gilpin and Soule (1986): “This chapter introduces the term ‘population 
vulnerability analysis’ (PVA) for analyses that estimate minimum viable populations 
(MVPs).  That is, MVP is the product, and PVA the process.” 

b. By the 1987 Viable Populations for Conservation book:  PVA had morphed into 
“Population Viability Analysis”. 

c. What is PVA?   
o  ‘Mills’ def. : the application of data and models to estimate probabilities that a 

population will persist for specified times into the future (AND to give insights into 
factors that constitute the biggest threats). 

 
Defining and describing “extinction”: 

Quasi-extinction threshold advantages 
o Provides a lot more options than modeling for extinction! 
o Allows you to finesse around the ignorance of how dynamics will change for 

your species at very low numbers (e.g., genetic stochasticity, demographic 
stochasticity, Allee affects, etc.). 

 
“Extinction Vortex” (from Mills 2007) 
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Two Primary Ways of Conducting a PVA 
 

1) Count-based (i.e., time series of abundance) 
2) Demographically explicit (based on vital rates) 

Count-based population growth models 

Population Growth in Unlimited Environments 
• Overview (see Mills 2007:91 - 99) 
 

Deterministic Exponential Growth Model 

• Unlimited, constant, favorable environment (i.e., population growth rate remains 
constant).  

• Age-specific birth and death rates remain constant (i.e., population has a stable-age 
distribution).  

 
Discrete growth: 

Nt+1 = Nt λ 
If  the population continues to grow at the rate λ for “t” time steps from an initial abundance at time 0 
(N0), then at time t we would expect N to be:  
  Nt = N0 *λ1* λ2* … λt   

Nt =  N0 λt  

 

Stochastic Exponential Growth Models (see Humbert et al. in review): 

• Stochastic: involving a random variable; a random outcome 

• A random variable (e.g., number of offspring) is one that can take more than one 

value in which the values are determined by probabilities. 

• Statistical Distributions and random outcome (Examples: uniform, normal, log-

normal) 

A reminder on calculating geometric mean, and why λλλλG is less than λλλλA: 
The geometric mean differs from the arithmetic mean because instead of adding a bunch 

of numbers and dividing by the total, you instead multiply a bunch of numbers (let’s call it “t” 
numbers) and take the tth root of the product.  To put these words into an equation for the 
geometric mean population growth rate (λG) over time: 
 

λG  = 1 2 3( * * *... )t
tλ λ λ λ  or equivalently 

λG  = ( )
1

1 2 3* * *... t
tλ λ λ λ  
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 The geometric mean will be less than the arithmetic mean when there is stochasticity.  
Let’s run through an example.  Suppose an endangered population grows at a constant λ=1.05; 
we would expect a 5% increase per year, so that in 16 years a population of 100 would have 
an expected size  of  
  N16 = 100 * 1.0516 = 218 
 Now suppose instead that the population growth alternated each year between λ = 1.55 
and λ = 0.55.  The arithmetic mean of the growth rate is still 1.05 [from (1.55+0.55)/2].  But 
the growth of the average population is governed by the geometric mean which is 

  1.55*0.55=0.923. 
After 16 years, the expected population size would be 
 
  N16 = 100 * 1.558 * 0.558 = 28.   
This is the same as projecting all 16 years with the geometric mean: 100 * 0.92316

  = 28. 
 A population of 28 is a lot less than the 218 expected from the arithmetic mean!  The 
variation in population growth leads to a likely decline for the population, even though the 
deterministic growth rate implies that the population should increase substantially.   
 An equivalent way to calculate the geometric mean population growth rate from a time 
series takes advantage of the mathematical properties of good old [r=ln(λ)]: 
  a) Calculate r for each interval by ln (Nt+1/Nt).   
  b) Take the arithmetic mean of all of the r’s to obtain r . 
  c) Convert the r back to λ (by way of λ= er) and you’ve got your λG. 
 
Another way to see the phenomenon (from Mills 2007): 
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Model 1: Exponential Growth Observation Error (EGOE) 

o The oldest, and most predominantly used model results in a log-linear 
regression of counts against time, where the slope of the regression gives the 
population trend (e.g. Caughley 1977, Eberhardt and Simmons 1992, 
Gerrodette 1987) 

o Actual population growth is deterministic 

o Stochasticity arises only from imprecision of abundance estimates 

( )0lntY N t Eµ= + +  

where, Yt = natural logarithm of observed (estimated) abundance; µ = instantaneous 

growth rate; ( )2~ 0,E N τ  

**Note: estimates of µ  and τ  can be obtained by linear regression of [ ]ln tn  against 

time (t). 

[ ]0ˆ y-interceptn Exp=  

µ̂  = slope 

2τ̂ =  mean residual sum-of-squares 
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Model 2: Exponential Growth Process Noise (EGPN) 

o Model often used to analyze population viability based on the exponential 
growth model (see Dennis et al. 1991, Cha. 3 Morris and Doak 2002) 

o Actual population growth is stochastic 

o ‘Process' noise: environmental stochasticity bumps the population growth 
rate around at each time step 

( ) ( )1ln lnt tN N Fµ+ = + +  

where, ( )2~ 0,F N σ  

• Parameters can be estimated (see Dennis et al. 1991) by linear regression, without 

intercept, of [ ]1ln( / /i i i iy n n s−=  as the ‘dependent variable’ and is  as the ‘independent 

variable’.  Where, 1i i is t t−= −  

Model 3: Exponential Growth State Space (EGSS) 

o Actual population growth is stochastic 

o ‘Process' noise and observation error induce stochasticity 

( ) ( )1ln lnt tN N Fµ+ = + +   actual abundance 

( )1 1lnt tY N E+ += +    natural logarithm of observed abundance 

o Parameters can be estimated (see Staples et al. 2004) using maximum 
likelihood or restricted maximum likelihood (REML) .  It has been our 
experience that REML estimates perform better. 
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Population Growth in Limited Environments 

• Limited environments cause age-specific birth and/or survival rates to decline with 
increasing population size. 

• Intraspecific competition causes growth rates to decline with increasing population 
size 

Stochastic Logistic (Ricker) Growth Model 

• Growth rate  is a decreasing linear function of population size 

( )1ln /t t tN N a bN F+ = + +  

where, a = maximum growth rate at N = 0 (i.e., Rmax); b = effect of intraspecific 
competition 

 

**Note if b = 0, this is the EGPN model 
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Stochastic Gompertz Growth Model 

• Growth rate (i.e., birth rate and mortality rate) is a decreasing linear function of 
the natural logarithm  of population size 

( ) ( )1ln / lnt t tN N a b N F+ = + × +  

**Notice:  a can no longer be interpreted as Rmax… As N approaches 0, the growth 
rate approaches infinity (∞ ).  a is the growth rate when abundance = 1. 
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Stochastic Theta-logistic Growth Model 

• Growth rate (i.e., birth rate and mortality rate) is a decreasing linear function of 
population size raised to the power theta (θ ) 

( )1ln /t t tN N a bN Fθ
+ = + +  

Three situations arise: 

1) 1θ = :  Ricker (logistic)-type density dependence 

2) 0 1θ< < :  Growth rate versus N is a concave relationship (e.g., Gompertz) 

3) 1θ > : Growth rate versus N is a convex relationship 
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Demographic-based population growth models 

Population projection matrix 
 
A population projection matrix is “…merely a box to help us keep straight the bookkeeping of 
birth and survival, a mathematical representation of biological processes.” (from Mills 2007). 
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How timing of sampling affects the matrix  (from Mills 2007) 
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Projecting a matrix through time 
 

( 1) * ( )t t+ =n M n  
 
Matrix x Vector multiplication conveniently carries out the required mathematical operations 
(addition due to births and subtraction due to mortality) to project each age (stage) to the next 
time step (from Mills 2007) 
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Stochastic matrix models 
 
**Remember:  Stochasticity involves a random outcome 
 
Two types of stochasticity 
 

1) Environmental: random outcomes for survival and reproduction in each time step of 
the projection model (i.e., temporal stochasticity). 

• Environmental stochasticity affects the entire population 
• Modeled as random draws at each time step for survival and reproduction 

given means and variances for these rates 
 

2) Demographic: Each individual has its own random fate 
• Survival – Each individual either lives or dies according to a binomial 

process 
• Reproduction – The actual number of offspring by each individual is a 

random variable (e.g., Poisson process) 
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Metapopulation models 

• Most metapopulation models use stochastic matrix models as the basis for each 
population’s growth with the addition of dispersal among populations and correlated 
demographic rates among populations 

 
Hierarchically structured biological units based on demography, movements, genetics and 
geography: 

• Individuals 
• Demes 
• Populations 
• Metapopulations 

 
Metapopulation Structures 
 

• Non-equlibrium 
 

• Classic 
 

• Patchy 
 

• Mainland-Island/Source-Sink 
 
Examples: 
 

• Red-winged Blackbirds in SE Washington 
 

• Greater Sage Grouse 
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Sensitivity Analysis of Ecological Models 
 

Critical to determining the effects that various components within a population 
projection model will have on overall viability are methods for determining the relationship 
between changes in model components and changes in population viability.  Sensitivity 
analysis offers a direct avenue for quantifying these relationships by assessing how the output 
from a given model responds to changes in its inputs (Saltelli et al. 2000).  Sensitivity analysis 
includes a wide range of methods that can be grouped into 2 general approaches including 
local sensitivity analysis and global sensitivity analysis (Saltelli et al. 1999).  In local 
sensitivity analysis, model parameters are varied one at a time by a fixed amount while others 
are held to their nominal (i.e., best estimate) value.  Local sensitivity to a parameter is 
measured by relating changes in the model output to the change in the parameter (sometimes 
normalized by the nominal value or standard deviation).  Local sensitivity analysis has seen 
widespread use and because sensitivity values can usually be derived analytically through the 
use of partial derivatives, implementation is often straightforward.  However, local measures 
of sensitivity can suffer when changes in parameters cause non-linear responses in the model 
output, when parameter uncertainty is not sufficiently characterized by a fixed change in the 
nominal value, when it is realistic to consider simultaneous changes in other model 
parameters, or when parameters interact.  Many of these problems can be alleviated by 
employing a global approach to sensitivity analysis. 

 
Two broad categories of sensitivity analyses: 

1. Local sensitivity analysis – parameters are changed one at a time around the ‘local’ 
or best estimates (e.g., manual perturbation, analytical sensitivity/elasticity analysis) 

2. Global sensitivity analysis – multiple parameters can be varied simultaneously and 
over a range of values (e.g., life-stage simulation analysis, variance partitioning). 

 
Global sensitivity analysis differs from local sensitivity analysis in two important ways.  First, 
the full range of possible values for a parameter is explored to determine its effect on model 
output.  Second, effect of the focal parameter on model output is averaged over possible 
variations of other model parameters.  Because of the difficulty in relating model output to 
simultaneously varying and interacting inputs, several methods have been developed for 
global sensitivity analysis (Saltelli et al. 2000).   

Using sensitivity analysis to inform conservation decisions based on population projection 
models has become increasingly popular and sophisticated.  One of its earliest uses was in 
evaluating life-history characteristics of California condors that make the species particularly 
vulnerable to extinction (Mertz 1971).  This study used manual perturbation, a form of local 
sensitivity analysis, to change vital rates and evaluated the effect these changes had on the 
likelihood of the population’s persistence.  Manual perturbation continues to be a popular 
method for conducting a sensitivity analysis on PVA models.  However, several alternative 
approaches (see Mills and Lindberg 2002 for a review) have been developed including 
analytical sensitivity and elasticity analysis (Goodman 1971, Caswell 2001); life-table 
response experiments (Caswell 1989); and regression-based approaches (McCarthy et al. 
1996, Wisdom and Mills 1997, Wisdom et al. 2000).  
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Classic Approaches: Importance of Vital Rates 
Background: 

• Within a population, different stage or age classes contribute differentially to 
future population growth.  This can be quantified by a stage’s “Reproductive 
Value”: 

For example (from Mills 2007): 
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• At the same time, we know that different stage or age classes vary in their 
proportional representation in the population; we quantify that by the “Stable 
Age Distribution”. (from Mills 2007) 

 
 

• So if different stage classes have different impact on future population growth, and 
are differentially represented in the total population, it makes sense that different vital 
rates associated with those stages would have different effects on population growth! 

• Next, the 4 primary ways that the “importance” of different vital rates have been 
quantified via “sensitivity analysis” 
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Method #1: Manual perturbation 
Perturb or change the value of a parameter in a population growth model and see how the 
change affects the output. 

• Growth models based on time series:  Change the growth rate; the effect of 
density dependence or the amount of environmental stochasticity 

• Demographic-based growth models:  Change survival, fecundity or the 
variance in these parameters 

Method #2: Analytical sensitivity and elasticity analysis 
Classically applied to matrix projection models (from Mills 2007) 
 

 
 

 
 

BUT IN THE REAL WORLD WE KNOW THAT BOTH NATURE AND MANAGEMENT 
CHANGE DIFFERENT VITAL RATES BY DIFFERENT AMOUNTS.   SO WE NEED TO 
ACCOUNT FOR THE MAGNITUDE, OR VARIATION, OF VITAL RATE CHANGES. 
 

Method #3: Life table response experiments (LTRE) 
Provides a way of incorporating variation in vital rates into sensitivity/elasticity analysis (see 
Caswell 2001).  However a more flexible method for incorporating variation is ‘Life-stage 
simulation analysis’ (see next section). 
 

Method #4: Life-stage simulation analysis (LSA) 
Vi tal rates with low elasticities that vary a lot can affect population growth more than those 
that change little. 
 

1. Construct replicate matrices using vital rate means and variation 

2. Project each of the 1,000 or so matrices to stable age distribution 

3. For each set of vital rates, calculate finite growth rate (λ) 

4. Calculate coefficient of determination (r2) from regression of λ on each vital rate 
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SOME EXAMPLES OF SENSITIVITY ANALYSIS IN ACTION TO HELP GUIDE 

WILDLIFE MANAGEMENT DECISIONS (SEE MILLS ET AL. 2007, CHAPTER 7 IN 

BACK OF YOUR PACKAGE) 

 

EXAMPLE 1 (from Mills 2007): what is the best way to decrease population growth of an 

invasive or pest species? (brown-headed cowbird) 

 



 22 
EXAMPLE 2 (from Mills 2007): How should $50 million in Duck Stamp dollars be used to 
maximize population growth of a harvested species?  (mallards) 
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EXAMPLE 3 (from Mills 2007): Which management actions would most efficiently increase 
population growth rate for an endangered species? (red-cockaded woodpecker) 

 
 
EXAMPLE 4: How should research and management focus efforts to reverse global 
amphibian population declines? 
 
 [see powerpoint presentation: “amphibian example of sensitivity analysis.ppt” 
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Variance Partitioning 
 
In general, a global sensitivity analysis to partition the output variance involves the following: 

1. The possible values for each of the i input parameters in a model are characterized 
by a probability distribution Pi.  Often these distributions are chosen to reflect the 
uncertainty in the parameter estimates but, depending on the goal of the sensitivity 
analysis, they may reflect natural variation or uncertainty related to the effects of 
management actions. 

2. The population projection model is run for many random draws of the model 
parameters from their respective probability distributions. Repeated samples are 
selected from each distribution and these values are used as inputs for model 
evaluation.  A unique model output (e.g., probability of persistence) is calculated for 
each of the replicate input samples. 

3. The distribution of the output (i.e., viability) is described.  This step is commonly 
referred to as “uncertainty analysis” because we are depicting the uncertainty in the 
output that results from uncertain inputs into the model. 

4. Sensitivity indices are constructed relating the uncertainty in the model parameters 
to the uncertainty in the model output.  In particular, many metrics for describing 
sensitivity provide the proportion of the variance in the output attributable to the 
variance in the input parameters.  

5. Each parameter can be ranked in importance according to the proportion of the total 
variance in the output that is attributable to each parameter.  
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Standardized regression coefficients 
The idea behind LSA (i.e., relating the uncertainty in the input parameter values to the 
uncertainty in the output metric by a linear model) can be generalized for any population 
projection model (e.g., stochastic models) and for other response variables. 
 
From the model, 

εββββ ++⋅⋅⋅+++= kk XXXY 22110  

we have, 
2
.

222
2

2
2

2
1

2
1

2
xykkY σσβσβσβσ ++⋅⋅⋅++=  

 
** If the Xis are independent (i.e., not correlated) random variables** (Snedecor and Cochran 
1989:359). 
 

• In this special case, the standardized partial regression coefficients (i.e., i i Yβ σ σ ) 

are equal to the correlation coefficients of Xi and Y (Sokal and Rohlf 1981:644).  
 

• ( )2

i i Yβ σ σ  (the squared standardized regression coefficient) measure the fraction of 

the variance of Y attributable to its linear regression on Xi.  This fraction can reasonably 
be regarded as a measure of the relative importance of Xi. 

 
 
 

Sobol’ indices 

• Accommodates non-linear relationships between the output metric and the input 
parameters. 

• Allows for interactions among input parameters 
 
The total variance in the output D = var(y) is decomposed into contributions from each 
parameter i. 
 

, 1,2, ,
1 1

n

i i j n
i i j n

D D D D
= ≤ ≤ ≤

= + + +∑ ∑ K
L  

 
where, Di are the main effects and Di,j are the second (and higher) order interaction effects 
between i and j, etc. 
 
First order Sobol’ indices are given by: 

i
i

DS D=  

Total sensitivity indices are given by: 

, 1,2, ,i i i j n
j

TS S S S= + + +∑ K
L  
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Fourier Amplitude Sensitivity Test (FAST) 

• Goal is estimation of Sobol’ indices (i.e., partition output variance into main and 
interaction effects) 

• Somewhat ‘FASTer’ because indices can be achieved with only a single set of runs 
(as opposed to an alternative Monte Carlo procedure) 

• Idea is to fit a Fourier series to the output distribution and relate the input 
parameters to this function. 

 

 

Remember: 

Sobal’ indices and those derived from FAST are considered ‘model independent’ in that they 
do not rely on linear or near-linear relationships between the model outputs and the input 
parameters.  They, of course, are not truly model independent but do offer more flexibility 
than regression-based approaches.  Additionally, these methods allow the variance in the 
output attributable to variation in input parameters to be decomposed into first order effects as 
well as higher order effects caused by interactions among model parameters.  Total effect 
indices are calculated by summing the first order effects with each additional higher order 
effects.  Thus, they allow for the importance of interactions among model parameters to be 
quantified in relation to model output. 
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Analytical Tools (Computer Software) 

Recovery Action Prioritization (RAP sheets) 
 
Use Principles of Sensitivity Analysis to Guide Management Decisions When Data Are Sparse  
 
• Created by L. S. Mills, C. Hartway, M. Kauffman 
• See: http://www.uwyo.edu/rap_sheets/rapmainpage.html (for the work in progress) 
 
Also see “Rap Sheets for Miami TWS” 
 

 

PopGrowthAnalysis 
 
Visual Basic Program created by J. S. Horne, B. Dennis, J. Humbert, L. S. Mills, E. O. 
Garton. 
 
• This program is a user-friendly ‘front-end’ to interface with the freely available program R 

(R Development Core Team 2006; program available online). 
• Utilizes R contributed package PopGrowth4 
• Input data can be a tab-delimited text file or a Microsoft Excel spreadsheet 
• Allows user to fit several population growth models to time-series abundance data 

o Exponential growth with observation error (EGOE) 
o Exponential growth with process noise (EGPN) 
o Exponential growth state space (EGSS) 
o Ricker (logistic)-type density dependent growth 
o Gompertz density dependent growth 
o Theta-logistic density dependent growth 

• Provides selection criteria (Akaike’s Information Criteria) for EGPN, Ricker, Gompertz 
and Theta-logistic growth models 

• Provides relevant parameter estimates and measures of precision of these estimates 
• Enables user to easily implement Viable Population Monitoring (Staples et al. 2005) based 

on parameter estimates from EGPN and EGSS models 
• Provides residuals from fitted models for investigating effects of environmental covariates 

and assessing correlations among populations 
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RAMAS MetaPop (GIS) 
 
• Stochastic matrix-based metapopulation projection model (see http://www.ramas.com/) 
• Very flexible (i.e., dangerous) 
• If the analysis is well thought out, it can be quite powerful 
• Also, you can do a sensitivity analysis now with an R Package called GRIP (Generation of 

Random Input Parameters) 

GRIP (Generation of Random Input Parameters) 
Introduced by Curtis and Naujokaitis-Lewis (2008) 
 
• Generates unique sets of input parameters for replicate stochastic simulations in 

RAMAS Metapop 4.0 
• Utilizes freely available program R (R Development Core Team 2006; program 

available online) 
• R code for executing GRIP is available as a Supplement in (Curtis and Naujokaitis-

Lewis 2008) through Ecological Archives (A018-033-S1) 
• Will likely need to modify R code to conduct relevant/realistic sensitivity analyses for a 

particular (meta) population 

MetaPVA 
 
Visual Basic Program in development by J. S. Horne, J. Tracey and E. O. Garton. 
 
• Initiated (Before GRIP!)  to allow users to easily implement several methods of sensitivity 

analysis 
• Based on stochastic metapopulation projection model analogous to that used in RAMAS 

Metapop 
• Utilizes R contributed package Sensitivity 
• Currently allows more flexibility in how parameters are sampled and automates the 

sensitivity analysis 
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Examples: Sensitivity Analysis of Population Models 
 

Wolves and Elk in Yellowstone National Park 
 
An Example of a DSP:  Projecting Northern Yellowstone Elk Population Growth and 
Reintroduced Wolf Population Impacts 
 

• Empirical, stage-based model developed from published studies of Northern 
Yellowstone elk herd and wolves feeding on moose and deer in other areas 

• Validation based on previous history of elk herd and aerial surveys adjusted for 
visibility bias 

• Mortality rates of calves and cows decline with increasing elk population size 
• Hunting mortality is additive 
• Wolf mortality estimated from functional response of wolves to elk density and 

handling time 
• Wolf mortality is compensatory on cows and reduces average female age 
• Long-term persistence of Northern Yellowstone elk herd assured if human harvest not 

too high and winter severity not too extreme 

Elk in the Blue Mountains of Washington 
An example of a SSP:  Stochastic density dependent model of harvested elk population in 
Blue Mountains of SE Washington 

• Generalized Northern Yellowstone elk-wolf model to apply to other elk 
populations based on relative size and productivity of summer and winter 
ranges, preganancy rates of  elk, etc. 

• Harvest and winter severity treated as stochastic 
• Deterministic model predictions validated against aerial surveys and harvest 

records 

• Stochastic model predictions depend upon winter severity and harvest rates by 
stage class 

 

Golden-cheeked Warblers 
• Global sensitivity analysis used to determine importance of patches in golden-

cheeked warbler metapopulation 
• Based on stochastic demographic-based metapopulation model 
• Unintended Consequence:  Sensitivity Analysis was helpful in identifying problems 

in the model structure 
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OverviewOverview

Structure of biological populations and their 
habitat (spatial structure)
Red-winged blackbird metapopulation in 
Columbia NWR in SE Washington
Elk metapopulation in Idaho
Greater sage grouse species metapopulation
and component populations

1 km

Red-winged Blackbirds

Hierarchic Structure:

Individual
Deme
Population
Metapopulation

Columbia NWR
USFWS Staff,
Gordon Orians,
Les Baletsky &
Robyn Miller

Hierarchically Structured Units: Hierarchically Structured Units: 
BiologicalBiological

Individual
Deme
Population (biological)
Metapopulation

DemeDeme

“A group of individuals where breeding is 
random” (Emlen 1984).
“A panmictic population” (Ehrlich and Holm 
1963)

Identification of demes and other groupings of 
individuals should be based on demography, 
movement, genetics and geography.

DemeDeme

Genetics: Random breeding within constraints of 
social system.
Demography: Smallest grouping where its feasible 
to estimate birth, death, immigration and 
emigration rates.
Movement: Restricted to home ranges in key 
seasons.
Geography: Continuous distribution of individuals 
(one “patch” of habitat).



PopulationPopulation

= a collection of demes with strong 
connections between adjacent 
demes

PopulationPopulation

Demography: Very high correlations 
between demes.
Movement: High rates of dispersal between 
adjacent demes.
Genetics: Very closely related genetically.
Geography: A collection of patches of 
habitat without great expanses of non-
habitat intervening between them.

MetapopulationMetapopulation

= “ a population of populations”
(Levins 1969)

MetapopulationMetapopulation

Movement: Probability of dispersal between 
populations low but colonization occurs.
Demography: Possible low correlations in 
rates produces high independence.
Genetics: Genetic differentiation occurs 
between populations through time.
Geography: Substantial areas of non-habitat 
may separate populations.

Metapopulation structure

Classical

Mainland-island

Patchy

Nonequilibrium

(Based on Harrison and Taylor 1997; Stith et al. 1996)Patch size
All small Small and large All large

Patch
isolation

Highly
connected
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isolated

Occupied habitat patches

Vacant habitat patches
Boundaries of populations
Dispersal

Boundary of metapopulation

or Source-sink

1 km

Columbia NWR
USFWS Staff,
Gordon Orians,
Les Baletsky &
Robyn Miller



Metapopulation of Elk in Idaho

• Similarity or dissimilarity among populations from 
different locations based on genetic markers

• Population structure
• Demographic patterns

Photo: Hugh Hogle

Percent of 
Individuals
Correctly 
Assigned
to Region

27.8%

42.6%

36.8%

Chesnimnus
44.4%

Significant
Pairwise

Fst
Values

0.025

0.023
0.023

>34

>34
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Calves: 100 Cows ’87-’98

>34

>34
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Elk Population ContinuumElk Population Continuum

Elk populations in the Northern Rocky Mountains
– appear to be continuous
– sufficient interchange of individuals occurs to limit genetic 

differentiation
– Polziehn et al. (2000) 

found a similar pattern 
among 6 populations in 
the Canadian Rockies

**  demographic patterns show 
more differentiation between populations



Greater Sage Grouse Greater Sage Grouse MetapopulationMetapopulation
Genetic DifferentiationGenetic Differentiation

Selecting A Population Model
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PVA for GMZ 4 Population

Gompertz Model :
Probability of 
extinction in 100 years
depending on 
Extinction Threshold 
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Sensitivity Analysis for GMZ 4 
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Demographic Correlations (SE) 
Among Sage Grouse Populations
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Gene flow: Fst measures how much of total variation 
(heterozygosity) is partitioned into sub-populations.
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1)  GUIDELINES FOR PRIORITIZING 
MANAGEMENT

• Provide guidelines for immediate actions to facilitate 
recovery and to direct adaptive management of T&E species 
with little existing data

• Target research needs for long-term management

We aim to bridge the gulf between two paradigms:

Land manager intuition

- extensive local 
knowledge of system

- incorporates logistics 
and training constraints

Population models

- provide non-intuitive 
insights into mechanisms

Prioritizing management actions for species recovery

GUIDELINES FOR 
PRIORITIZING MANAGEMENT

We aim to bridge the gulf between two paradigms:

Land manager intuition

- extensive local 
knowledge of system

- incorporates logistics 
and training constraints

Population models

- provide non-intuitive 
insights into mechanisms

Prioritizing management actions for species recovery

GUIDELINES FOR 
PRIORITIZING MANAGEMENT



We combine these approaches to guide species 
management and prioritize data 
collection efforts for maximum efficacy

1) Developed models for species for which 
extensive data exists

2) Collected and analyzed data on which life-
stages typical management actions can affect 
and by how much

GUIDELINES FOR 
PRIORITIZING MANAGEMENT

Probability of 
breeding

Fecundity

Egg survival

Nestling 
survival

Juvenile 
survival

Developed matrix models using species for which we do 
have extensive demographic data

Adult 
survival

Age at 
maturation

MODELING APPROACH

BS = Annual probability an sub-adult breeds 

BA = Annual probability an adult breeds

SE= Egg survival S0  = Nestling survival

SJ  = Annual juvenile survival SA = Annual adult survival

MODELING APPROACH

( ) ( )

























AJ

J

J

J

J

EAES

SS

S

S

S

S

SSBSSB 5.05.00000
00( )

( )
( )
( )
( )
( )
























+
+
+
+
+
+

1

1

1

1

1

1

4

3

2

1

0

tN

tN

tN

tN

tN

tN

A

J

J

J

J

( )
( )
( )
( )
( )
( )























tN

tN

tN

tN

tN

tN

A

J

J

J

J

4

3

2

1

0

=



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Annual Adult Survival

N
es

t S
u

cc
es

s

P
o

pu
lation increasing

Population decreasing

Survival too low

MODELING APPROACH

Long-lived 
seabird:
Hawaiian 

Dark-Rumped 
Petrel

Pohakuloa 
Training Area, 

Hawaii

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Annual Adult Survival

N
es

t S
u

cc
es

s

P
o

pu
lation increasing

Population decreasing

Nest success too low

MODELING APPROACH

Long-lived 
seabird:
Hawaiian 

Dark-Rumped 
Petrel

Pohakuloa 
Training Area, 

Hawaii

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.75 0.80 0.85 0.90 0.95 1.00

Annual Adult Survival

N
es

t S
u

cc
es

s

Population 
increasing

Population 
decreasing

Which rates can change 
and by how much?

MODELING APPROACH

Long-lived 
seabird:
Hawaiian 

Dark-Rumped 
Petrel

Pohakuloa 
Training Area, 

Hawaii



Not all aspects of a species’ life history are created equal 
in their influence on overall population growth rate

To effectively manage species we need to know:

• Which rates can be affected through management actions, 
and the magnitude by which they can be altered

• What is the ultimate effect of different management 
actions on population growth rates

PRIORITIZING MANAGEMENT

Which rates are changed by management, and by how 
much?

Extensive literature search:
- contaminant removal,  controlled burns, grazing/mowing, 

predator removal, brood parasite removal

- amphibians, birds, mammals and reptiles, plants

- criteria:  studies must contain vital rates data from both 
managed and unmanagedpopulations (e.g. BACI 
or control treatment designs) 

Meta-analytical approach to evaluate mean effects and patterns 
of variation

PRIORITIZING MANAGEMENT
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Example: studies of bird nest success

1) All  management actions not created equal 

2) Large variation across species 
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Meta-analysis results across studies

1) mean 41% 
increase in 
nest success

2) significant 
heterogeneity 
of effect size 
between 
species
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RESULTS

Predator 
removal 

programs 
appear to 

benefit    
tree nesting

species 
more         

(P < 0.001)
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• Light dimming

• Increased power line visibility
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Elk demography: influence of vital rate variability

Adult survival is 3-4 
times more important 
to population growth 
than calf survival.

Calf survival is up to 10 
times more variable than 
adult survival.

Bighorn sheep at Ram Mtn, Alberta, 1975-1995

from Gaillard et al. 1998
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1. Collected vital rate estimates from across    
the range (≈ 13 sites, ≈ 40 estimates)

2. Removed sampling variance

3. Used overall mean and variance in Life-
Stage Simulation Analysis (LSA)
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3

The importance of calf survival for elk populations

Raithel, Kauffman & Pletscher, in review, JWM

Calf Elk Survival Rate

0.00 0.20 0.40 0.60 0.80 1.00

L
am

bd
a

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Prime-Age Cow Elk Survival Rate

0.60 0.70 0.80 0.90 1.00

L
am

b
da

0.70

0.80

0.90

1.00

1.10

1.20

1.30

r2 for calves = 0.75 r2 for adults = 0.16

 
Effect of Calf Survival on Lambda

0.85

0.90

0.95

1.00

1.05

1.10

L
am

b
da

Supplemental Feeding (Smith & Anderson 1998)

Large Fires, Drought, & Severe Winter (Singer et al. 1997)

Effect of Cow Survival on Lambda

0.85

0.90

0.95

1.00

1.05

1.10

L
am

bd
a

Hunted vs. Unhunted (Ballard et  al. 2000)

Complete Vehicular Access vs. Limited Access (Cole et al. 1997)



Amphibian declines and sensitivity analysis:
Identifying key life-history stages

(Biek, R., W. C Funk, B. A. Maxell, and L. S Mills.  2002. Conservation Biology)

Spotted frog (Rana pretiosa), Photo by Frank E. (Ed) Ely

Global amphibian declines

• Population declines and species losses 

• Human-disturbed and “pristine”habitats

• Some causes identified:  e.g. UV-B, habitat loss, fungal pathogens...

Examples

California tiger salamander 
(Ambystoma californiense), Photo by 
Gerald and Buff Corsi

Mountain yellow-legged frog (Rana
muscosa), Photo by Vance Vredenburg

Golden toad (Bufo periglenes)
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Approaches currently used to understand amphibian declines

1.  Monitoring



Approaches currently used to understand amphibian declines

2.   Experimental studies
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What is missing from amphibian decline research

Link between vital rate reductions and expected population-
level responses 
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Objectives

Demonstrate how ecological sensitivity analysis can
be used to:

1. Establish a link between vital rates and population
level responses

2. Guide research and management priorities



Sensitivity analysis and amphibian declines

• Conducted elasticity analysis and LSA for three species:

Western toad (Bufo boreas), Photo by Gerald 
and Buff Corsi

Red-legged frog (Rana aurora), Photo by Dong Lin

Common frog (Rana temporaria), Photo by 
Eugene Bruins

• Documentation of vital rates relatively thorough

• Local or regional population declines reported

• Mechanisms that reduced one or more vital rates 
identified

These species chosen because:

Prejuvenile Juvenile Adult

F1

P1 P2

G1 G2

Life history pattern

Prejuvenile =  Embryo
+ Tadpole
+ Metamorph



LSA results and interpretation

Main result
r2 values differ substantially
from elasticities and among
species

Interpretation
• r2 values weighted by vital 
rate variation

• vital rates with highest 
elasticities tend to have low 
levels of variation and, 
therefore, low r2 values

Elasticities

r2

Example:  Western toad

S (adult)

S (embryo)

S (adult)

S (embryo)

Management value of r2

3.0

1.21.0.8.6.4.20.0

2.5

2.0

1.5

1.0

.5

0.0

λλλλ
High r2

Vital rate

Normal 
range of
λλλλ

Higher 
range of
λλλλ

Decreased variation

Normal variation

Eliminating the lower range of variation of vital rates with high 
r2 values is a good way to increase λ

Utility of ecological sensitivity analysis for understanding, 
preventing, and reversing amphibian population declines

Elasticity analysis
• If any rate could be changed by the same amount, which will
modify λ the most.

LSA
• Given that different rates can change by different amounts, identifies 
which changes most efficiently modify λ.



Policy implications for amphibian decline research

• Current emphasis on monitoring programs and experimental studies

• These approaches important, but equally important are 
basic population ecology studies to: 

1.  Estimate vital rates (particularly lacking for amphibians)
2.  Understand population dynamics
3.  Predict population level effects of perturbations using

modeling approaches such as sensitivity analysis

• Important to fund basic amphibian population ecology studies as
well as monitoring programs and experimental studies

Mountain Mist Frog (Litoria nyakalensis),
Photo by J-M. Hero



Predicting effects of wolf Predicting effects of wolf 
reintroductions on ungulate reintroductions on ungulate 

populations: Comparing model populations: Comparing model 
predictions to observations for predictions to observations for 
elk and wolves in Yellowstone.elk and wolves in Yellowstone.

– by Edward O. Garton1, Douglas W. Smith2, Bob 
Crabtree1, Bruce Ackerman1, and Gerry Wright1

– 1.  Fish and Wildlife Dept., University of Idaho, Moscow, ID
83844, 

– 2.  National Park Service, Yellowstone Center for 
Resources, P.O. Box 168, Yellowstone National Park, WY 
82190

OverviewOverview

Can we correctly estimate effects of 
reintroduced wolves?
Modelling project for National Park Service 
in 1990 to answer key questions before 
wolves were reintroduced to Yellowstone
Assess success of the predictions
Implications for management today

The Question in 1990: What would The Question in 1990: What would 
be the impact on the Northern be the impact on the Northern 
Yellowstone elk herd of a wolf Yellowstone elk herd of a wolf 
reintroduction to Yellowstone reintroduction to Yellowstone 

National Park?National Park?

My research group and Mark Boyce (Univ. 
Wyoming) were each invited separately to 
take a modeling approach to answer this 
question.

1990 Approach1990 Approach

Evaluate dynamics of Northern 
Yellowstone Elk Herd using available data
Predict characteristics of wolf population 
growth and predation from literature
Build an empirically based projection model
Validate portions of the model by 
comparing predictions to observed data in 
1990

Requirements in 1990Requirements in 1990

Deterministic, mechanistic model [Simple, clear]
All parameters (values) based on peer-reviewed 
scientific literature or our own estimates:
Northern Yellowstone elk herd (Houston 1982)
– Ungulate ecology

Wolf population dynamics (Mech 1970)
Wolf predation on

Moose
Deer
Elk (Carbyn 1974, 1983, Weaver 1979)

ResultsResults
Garton, E.O., R.L. Crabtree, B.B. Ackerman, and 
and G. Wright.  1990. 
The potential impact of a reintroduced wolf 
population on the northern Yellowstone elk herd.  
Pages 3-59 to 3-91 in
Wolves for Yellowstone? A report to the 
United States Congress. Vol. II:  Research and 
and analysis.  National Park Service.  Yellowstone 
Yellowstone National Park.  571 pp.



ResultsResults

Singer, F.J., W. Schreier, J. Oppenheim, and E.O. 
E.O. Garton.  1989.

Drought, fires and large mammals.  
Bioscience 39:716-722.

Model Format and Input 
Parameters

ELK HAVE 21 AGE CLASSES AND 5 AGE 
GROUPS
STARTING     GROUP 

AGE              NAME
0       CALF      
1       YEARLING  
2       2-YR_OLD  
3       PRIME     
9       OLD 

FECUNDITY REGRESSION COEFFICIENTS
(CONSTANT, POPULATION SIZE, WINTER SEVERITY)

FOR EACH OF THE 5 AGE GROUPS ARE:

AGE GROUP   CONSTANT  POPN-SIZE  WINTER
SEVERITY

------------------ ------------------ ---------------- ------------
1    CALF             0.0     0.0      0.0
2   YEARLING     0.5512     -0.0000273      0.1485
3    2-YR_OLD     1.5023     -0.0000257      0.0377
4    PRIME           1.596       -0.00003130    0.04006
5   OLD 0.982         0.0                  0.0

SURVIVAL REGRESSION COEFFICIENTS
FOR MALES

AGE GROUP   CONSTANT  POPN-SIZE  WINTER-
SEVERITY

------------------ ------------------ ---------------- ------------
CALF              -12.753     0.00284        -2.12
YEARLING          -3.177            0.00168        -1.34
2-YR_OLD      -3.177     0.00168        -1.34

PRIME              -3.177            0.00168        -1.34
OLD                 -3.177     0.00168        -1.34     

SURVIVAL REGRESSION COEFFICIENTS

FOR FEMALES

AGE GROUP   CONSTANT  POPN-SIZE  WINTER-
SEVERITY

------------------ --------------- ---------------- ---------------
CALF          -12.753               0.00284      -2.12

YEARLING       -9.179               0.0014      -3.142
2-YR_OLD       -9.179     0.0014     -3.142

PRIME          -9.179     0.0014     -3.142
OLD             -9.179     0.0014     -3.142

VULNERABILITY TO HARVEST AND 

PREDATION

WOLF HUMAN    
MALE   FEMALE       MALE   FEMALE

CALF       8.400   8.400    0.370   0.370       
YEARLING   8.200   8.200       1.000   0.560     
2-YR_OLD   2.500   2.500      1.000   0.560      
PRIME       1.000   1.000    1.000   0.560    
OLD          6.500   6.500      1.000   0.560   



Key Questions: Elk Population DynamicsKey Questions: Elk Population Dynamics

Number of elk
– Visibility bias

Annual Mortality
– Density-dependent?

Natural and Harvest Mortality
– Additive or compensatory?

r2=67%

r2=64%

Best Model: Inverse density-dependence +
100% compensatory harvest mortality: r2 = 82%

Total Mortality Rate and Total Mortality Rate and 
Harvest of Cows and Harvest of Cows and 

CalvesCalves

Models for cows:
– Harvest is 88-96% additive 
– Best model incorporating density-dependence 

and winter severity implies that harvest is 
almost completely additive.

Models for calves
– All models, including ones incorporating 

density-dependence, imply harvest is 
completely additive.



Dispersal?

Wolf NumbersWolf Numbers

Territorial behavior of wolves
Predict number of packs and pack size from 
prey biomass (tons available per wolf)



VULNERABILITY TO HARVEST AND VULNERABILITY TO HARVEST AND 

PREDATIONPREDATION

WOLF                    HUMAN    
MALE   FEMALE       MALE   FEMALE

CALF       8.400   8.400               0.370   0.370       
YEARLING   8.200   8.200       1.000   0.560     
2-YR_OLD   2.500   2.500             1.000   0.560      
PRIME       1.000   1.000             1.000   0.560    
OLD          6.500   6.500             1.000   0.560   



Comparing Model Predictions Comparing Model Predictions 
to What Happened 1995to What Happened 1995--20052005

Wolf population on the Northern Range 
increased from 21 at introduction (1995) to 
69 by 2000
Fluctuated from 58 to 98 since then with an 
average over last 7 years of 75.
Confirms model predictions nicely!

Comparing Model Predictions Comparing Model Predictions 
to What Happened 1995to What Happened 1995--20052005

Elk population raw (uncorrected) counts 
have fluctuated between 8,300 and 14,500 
with a generally downward trend.
Model predicts stable population around 
10,000 elk on Northern Range but sensitive 
to following:

Implications:Implications:
Hunter HarvestHunter Harvest

Population trend for Northern Yellowstone Elk 
herd at current size is very sensitive to 
Human harvest rate:
@ 9% harvest (‘70-’80s) - Stable with wolves
@ 11% harvest (’95-’05) - Declines with wolves
@ 7% harvest - Increases with wolves
@ 9% harvest - Increases without wolves

Implications:Implications:
Winter SeverityWinter Severity

Population trend for Northern Yellowstone 
Elk herd at current size is very sensitive to 
winter severity:
– Average severity: population stable
– Mild winters: population increases 10% / year
– Severe winters: population decreases 10% /year

In 1/3 of years, population either increases 
or decreases at least 10%

Implications: Implications: 
Elk ProductivityElk Productivity

High wolf predation on older, menopausal 
cows shifts age structure of females to 
younger more fecund females.
Increased average female productivity 
partially compensates for higher mortality 
rate of calves due to wolf predation and 
human harvest of male calves.



Implications:Implications:
PersistencePersistence

High probability of persistence of Northern Yellowstone 
elk herd in face of both wolf predation and hunter harvest 
on Northern Range because of strong inverse density-
dependence of vital rates:
– Female productivity
– Survival of calves, cows and bulls

ConclusionsConclusions

1990’s predictions successful for wolves
Northern Yellowstone elk herd projected to 
be stable with high chance of persistence 
but average abundance depends on
– Hunter harvest
– Winter severity

Stochastic Density-Dependent 
Elk Population Model

Generalized elk-wolf model for 
Yellowstone to apply to other elk 
populations based on relative size and 
productivity of summer and winter ranges, 
pregnancy rates, etc.

Harvest in Blue Mountains
Spikes Adults Tot Bulls Antlerless
No. Percent No. Percent No. Percent Total Percent

278 66.67 78 23.01 356 47.09 281 7.07
190 67.62 82 25.47 272 45.11 243 7.91
241 68.47 64 15.31 305 39.61 167 4.92
177 68.34 64 17.25 241 38.25 15 0.46
138 61.61 69 22.77 207 39.28 109 3.41
309 77.64 71 28.63 380 58.82 57 1.95
107 46.93 41 15.02 148 29.54 61 1.84
169 64.75 40 13.99 209 38.21 28 0.84

201.13 65.25 63.63 20.18 264.75 41.99 120.13 3.55
69.40 8.70 15.57 5.49 79.21 8.58 100.23 2.82

Mean
SD

Projected Blue Mountain Elk
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Mean SD
450.0   0.0 Winter Range in square miles 
1100.0  0.0 Summer Range in square miles
0.0      1.0 Winter Severity

0.79  0.087 Spike Harvest as a proportion of spikes in fall 
0.24  0.055 Adult Bull Harvest as a prop. of fall adult bulls
0.043  0.028 Antlerless Harvest as a proportion of fall 

cows + calves



Stochastic Predictions
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Metapopulation viability of the golden-
cheeked warbler: issues and potential 

of a global sensitivity analyses 

Jon S. Horne
Katherine M. Strickler 

University of Idaho

Golden-Cheeked Warbler 
(Dendroica chrysoparia)

• breeds in closed-canopy woodlands, primarily 
Ashe juniper and oak

• declined due to habitat loss and fragmentation 
from clearing of juniper for urban expansion, 
agriculture, and commercial harvest

Golden-Cheeked Warbler Recovery

• Habitat protection

– reserve systems should include habitat most 
likely to contribute to recovery

• Conservation incentive programs

– provide financial support to landowners for 
protecting habitat

– sell “credits” to developers seeking mitigation

• Need objective, quantitative methods for 
assigning recovery value to habitat patches



Valuing Habitat for GCWA Recovery

• All habitat patches are not created equal

• Multiple population (metapopulations) models 
must consider characteristics that vary among 
and within populations

• Objective: Evaluate important drivers of 
metapopulation viability

• Inputs
– Demographics (stage/age-specific)

• Survival
• Reproduction

– Population parameters
• Number of populations (habitat patches)
• Initial abundance
• Size of habitat patch (K)

– Metapopulation dynamics
• Dispersal among habitat patches
• Correlated demographics among patches

• Output
– Metapopulation viability (e.g., probability of 

persistence)

Multiple Population Models

• How can we evaluate how changes in the inputs (e.g., 
management actions across space) relate to changes in 
output (i.e., metapopulation viability), in the face of 
uncertainty?

• Very complex model
– Large number of input parameters (e.g., 100s)
– Management affects parameters differently
– Non-linear response to changes
– Interactions among input parameters

• Need:  Methods and Software
– Global Sensitivity Analysis of Metapopulation Viability 

Models

Multiple Population Models



Sensitivity Analysis
Methodvar(y)

X1 X2 X3

Input Parameters

X3X1 X2

Viability model

1 2 3( , , ,...)y f X X X=

Output distribution

Partitioning var(y)

…
X1

X2
X3

Partitioning var(y)

…
X1

X2
X3

X2:  Survival of Population 2
X3:  Size of Pop. 2 habitat
X1:  Reproduction of Population 1
.
.

Parameter Importance

Partitioning var(y)

…
X1

X2
X3

Sensitivity Analysis
Method

Global Sensitivity Analysis 

• Developed software (MetaPVA)

The Software

Juvenile
vital rates

Adult
vital rates

Patch Size

Single effect
Interactions



What patch and population 
characteristics are most important to 

GCWA metapopulation viability?

The Model

• Stochastic, demographic-
based, metapopulation 
projection model (e.g., 
RAMAS MetaPop)*

• Stage matrix

• Ceiling carrying capacity (K)
• Symmetric dispersal (14%)

Fort Hood

Balcones NWR

* Alldredge et al. (2004)

Sensitivity Analysis

• Sensitivity parameters: Survival, reproduction, K, 
dispersal

• Input values: Uniform distributions +/- 10% of nominal 
values

• Output metric: mean final population size after 20 years 
(100 replications) 

• Linear regression: standardized regression coefficients



Results
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Population Trajectories (Dispersal = 14%)
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The Devil in the Details

• Model Assumes:

Census (t = 0)
#HY0

#AHY0

Annual Survival Reproduce

Impose density
dependence

Dispersal

Matrix projection

#HY

#AHY
+ <=  K

15% after population
truncated to K

Census (t = t)
#HYt

#AHYt

New batch of HY
AHY survivors

GCWA Life History

Census (t = t)
#HYt

#AHYt

Winter in
Central America

Annual Survival

Establish breeding
territories

Density Dependence

Disperse to
unoccupied
territories

Separated by dispersal and DD

Reproduce



The Punchline

Our current simulation 

model

1. Survival
2. Reproduction
3. Density dependence
4. Dispersal

Our “new” simulation

model

1. Survival
2. Density dependence
3. Dispersal
4. Reproduction

Lessons Learned

• “Garbage in, garbage out…”
• Model structure also matters
• Start with Life History Sketch
• If LHS doesn’t match model structure in 

simulation program, BE CAUTIOUS!
• Sensitivity analysis helpful for identifying 

errors in model structure

Jon Horne Katherine Strickler
jhorne@uidaho.edu kstrickler@uidaho.edu

Questions, comments, ideas?
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Sage-Grouse Workshop 

 

Tools for assessing population trend and viability in greater sage-grouse 

 

Date:   March 26, 2009 

Location:  Yakima Valley Community College, Yakima, WA 

Host organizations: U.S. Geological Survey and University of Idaho, with funding from the 
Department of Defense’s Strategic Environmental Research and 
Development Program (SERDP) 

Host team:  J. Michael Scott (USGS, Idaho Cooperative Fish and Wildlife Research Unit) 
Oz Garton (University of Idaho) 
Jon Horne (University of Idaho) 
Katherine Strickler (University of Idaho) 
Brian Dennis (University of Idaho)  

Invited participants: Interested biologists and managers from Department of Defense, U.S. Fish 
and Wildlife Service, state game management agencies 

Contact:    Katherine Strickler, University of Idaho  
(kstrickler@uidaho.edu, 208-885-4343) 

Format: One-day workshop with presentations and hands-on software demonstration 

Background: Estimation of a population’s growth rate or trend is an important component 
of research and management for species of concern, as population increases 
or declines are often used to trigger management intervention.  Population 
trend is a common method for evaluating species status because it uses 
estimates of abundance over time, which are often the only population data 
available.  However, trend estimation is frequently challenged by factors such 
as missing counts, unknown variance in the data, or the need to select from a 
variety of statistical methods available for estimating trend using time-series 
abundance data.  In this workshop, we will address issues and approaches for 
estimating population trend and viability in the greater sage-grouse 
(Centrocercus urophasianus).  As sage-grouse populations have declined 
drastically across the western USA, they have become of increasing 



management concern to federal and state agencies.   Current levels of intense 
attention on sage-grouse management amplify the importance of accurately 
assessing population trend.  Extensive abundance estimates, in the form of 
lek counts conducted for more than 50 years in some areas, are well suited 
for population trend estimation. 

The objectives of the workshop are to:  1) review methods of estimating 
population trend and sensitivity, 2) introduce software programs developed at 
University of Idaho to estimate population viability (PopGrowth and 
MetaPVA), 3) present results of sage-grouse population trend and viability 
analyses, and 4) request feedback from participants regarding software 
products and analyses. 

We will use sage-grouse management concerns at Yakima Training Center 
and surrounding areas to illustrate the utility of PopGrowth and MetaPVA to 
address questions relevant to management of sage-grouse throughout its 
range.  In addition, we will present details of an ongoing, range-wide 
extinction risk assessment for greater sage-grouse.  The workshop will 
include hands-on lab sessions to demonstrate the software programs as well 
as opportunities to discuss different ways the programs can be used to 
address specific management questions raised by workshop participants. 

In this workshop we will describe and evaluate several stochastic growth 
models that can be fit to count data.  When coupled with environmental 
covariates, these models can be used to predict population viability under 
different management scenarios.   Further, estimation of population 
parameters derived from growth models can be used in sensitivity analyses to 
identify population characteristics that have the greatest influence on 
population viability.   

We will introduce two new software programs that fit different population 
growth models and implement several methods of sensitivity analysis.  In 
concert, PopGrowth and MetaPVA allow for selection of the most 
appropriate growth model for a particular data set, projection of population 
viability, and evaluation of the effect of different management actions on 
population persistence.   PopGrowth models population trend by estimating 
relevant parameters of stochastic population growth models.   After 
estimating model parameters, these estimates are then used in MetaPVA to 
infer population viability and identify the parameters to which population 
persistence is most sensitive. 



Agenda: 0800-0900 Introduction and overview of population trend methods, 
software and analyses 

 0900-1000 Time series analyses: software and preliminary results 

1000-1030 Discussion 

1030-1130 Sensitivity analyses for metapopulation viability models: 
software and preliminary results 

1130-1200 Discussion 

1200-1330 Lunch (provided) 

1330-1530 Software labs 

1530-1630 Critique and discussion 

1630-1700 W rap-up 

 

 

 



Population Viability Models 

 

Concept:  History 

Minimum Viable Population 

1. Leopold (1933:47):importance of recognizing “the minimum number of individuals which 
may successfully exist as a detached population.”   

2. MVP popularized by injunction from US Congress (NFMA of 1976) to US Forest Service: 
maintain “viable populations” of all native vertebrate species in each National Forest. 

3. From being a legal / philosophical concept to scientific inquiry:  

By late 60’s / early 70’s: two relevant (but independent) avenues: 

a. demographic (MacArthur and Wilson 1967, Richter-Dyn and Goel 1972) : Critical 
“floors” for population size, below which population would quickly go extinct.  
Classic: Shaffer’s work on grizzly bear MVP based purely on demo. & 
environmental stochasticity. (1983, 1985). 

b. Genetic issues 

Frankel (1974): Emphasized need and conditions for maintaining evolutionary potential 
of species:  “The prime parameters are the level and distribution of variation, the size of 
the minimum viable population, and the optimal and minimal sizes of reserves.  We need 
to know the minimum population size which is likely to yield a required level of 
variation.” 

 

4. Soulé and Wilcox (1980): first specific recommendations for MVP led to famous 50:500 
rule. 

a. 50:  minimum Ne to protect against short-term loss of fitness due to inbreeding, 
based on empirical observations 

Caveats that were often lost: 

• Ne, not N (Ne typically 1/5 to 1/3 N). 

• short term guideline for captive breeding and similar “holding operations”, not to 
the long term survival of wild populations which would have many other factors 
affecting their persistence. 



• based purely on genetic factors, not incorporating the other factors that would 
again increase the minimum necessary size for persistence. 

b. 500: estimated minimum genetic Ne where loss of additive genetic variation of a 
quantitative character due to genetic drift would be balanced by new variation due to 
mutations.   Range up to 5,000 or more. 

 

MVP is problematic for both philosophical and scientific reasons.   

 a)  point estimate vs. embracing uncertainty 

 b)  ecologically effective vs. minimally viable  

 

Population Viability Analysis 

1. Gilpin and Soule (1986): “This chapter introduces the term ‘population vulnerability 
analysis’ (PVA) for analyses that estimate minimum viable populations (MVPs).  That is, 
MVP is the product, and PVA the process.” 

2. By the 1987 Viable Populations for Conservation book:  PVA had morphed into “Population 
Viability Analysis”. 

3. What is PVA?   

• ‘Mills’ definition: the application of data and models to estimate probabilities that a 
population will persist for specified times into the future (AND to give insights into 
factors that constitute the biggest threats). 

 

Defining and describing “extinction”: 

Quasi-extinction threshold advantages 

• Provides a lot more options than modeling for extinction! 

• Allows you to finesse around the ignorance of how dynamics will change for your species at 
very low numbers (e.g., genetic stochasticity, demographic stochasticity, Allee affects, etc.). 

 

“Extinction Vortex” (from Mills 2007) 



 



Two Primary Ways of Conducting a PVA 

1. Count-based (i.e., time series of abundance) 

2. Demographically explicit (based on vital rates) 

 

Count-based population growth models 
 

Population Growth in Unlimited Environments 

• Overview (see Mills 2007:91 - 99) 

 

Deterministic Exponential Growth Model 

• Unlimited, constant, favorable environment (i.e., population growth rate remains constant).  

• Age-specific birth and death rates remain constant (i.e., population has a stable-age 
distribution).  

 

Discrete growth: 

Nt+1 = Nt λ 

If the population continues to grow at the rate λ for “t” time steps from an initial abundance at time 
0 (N0), then at time t we would expect N to be:  

  Nt = N0 *λ1* λ2* … λt   

Nt =  N0 λt  

 

Stochastic Exponential Growth Models (see Humbert et al. in review): 

• Stochastic: involving a random variable; a random outcome 

• A random variable (e.g., number of offspring) is one that can take more than one value 

in which the values are determined by probabilities. 



• Statistical Distributions and random outcome (Examples: uniform, normal, log-normal) 

 

Model 1: Exponential Growth Observation Error (EGOE) 

• The oldest, and most predominantly used model results in a log-linear regression of 
counts against time, where the slope of the regression gives the population trend (e.g. 
Caughley 1977, Eberhardt and Simmons 1992, Gerrodette 1987) 

• Actual population growth is deterministic 

• Stochasticity arises only from imprecision of abundance estimates 

( )0lntY N tμ= + E+  

where Yt = natural logarithm of observed (estimated) abundance; μ = instantaneous growth 
rate; ( )2~ 0,E N τ  

**Note: estimates of μ  and τ  can be obtained by linear regression of [ ]ln tn  against time 
(t). 

[ ]0ˆ y-interceptn Exp=  

μ̂  = slope 

2τ̂ =  mean residual sum-of-squares 
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Model 2: Exponential Growth Process Noise (EGPN) 

• Model often used to analyze population viability based on the exponential growth model 
(see Dennis et al. 1991, Cha. 3 Morris and Doak 2002) 

• Actual population growth is stochastic 

• ‘Process' noise: environmental stochasticity bumps the population growth rate around at 
each time step 

( ) ( )1ln lnt tN N μ+ = + + F  

where ( )2~ 0,F N σ  

• Parameters can be estimated (see Dennis et al. 1991) by linear regression, without 
intercept, of [ ]1ln( / /i i i iy n n= s−  as the ‘dependent variable’ and is  as the 
‘independent variable’.  Where, 1i i is t t −= −  

 

Model 3: Exponential Growth State Space (EGSS) 

• Actual population growth is stochastic 

• ‘Process' noise and observation error induce stochasticity 

 

( ) ( )1ln lnt tN N μ+ = + + F

E

  actual abundance 

( )1 1lnt tY N+ += +    natural logarithm of observed abundance 

 

• Parameters can be estimated (see Staples et al. 2004) using maximum likelihood or 
restricted maximum likelihood (REML) .  It has been our experience that REML 
estimates perform better. 



Population Growth in Limited Environments 

• Limited environments cause age-specific birth and/or survival rates to decline with 
increasing population size. 

• Intraspecific competition causes growth rates to decline with increasing population size 

 

Stochastic Logistic (Ricker) Growth Model 

• Growth rate  is a decreasing linear function of population size 

( )1ln /t t tN N a bN+ = + + F  

where   a = maximum growth rate at N = 0 (i.e., Rmax); b = effect of intraspecific 
competition 

 

**Note if b = 0, this is the EGPN model 
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Stochastic Gompertz Growth Model 

• Growth rate (i.e., birth rate and mortality rate) is a decreasing linear function of the 
natural logarithm of population size 

( ) ( )1ln / lnt t tN N a b N F+ = + × +  

**Note:  a can no longer be interpreted as Rmax… As N approaches 0, the growth rate 
approaches infinity ( ).  a is the growth rate when abundance = 1. ∞
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Stochastic Theta-logistic Growth Model 

• Growth rate (i.e., birth rate and mortality rate) is a decreasing linear function of 
population size raised to the power theta (θ ) 

( )1ln /t t tN N a bN Fθ
+ = + +  

Three situations arise: 

1. 1θ = :  Ricker (logistic)-type density dependence 

2. 0 1θ< < :  Growth rate versus N is a concave relationship (e.g., Gompertz) 

3. 1θ > : Growth rate versus N is a convex relationship 



A reminder on calculating geometric mean, and why λG is less than λA: 

The geometric mean differs from the arithmetic mean because instead of adding a bunch of numbers 
and dividing by the total, you instead multiply a bunch of numbers (let’s call it “t” numbers) and 
take the tth root of the product.  To put these words into an equation for the geometric mean 
population growth rate (λG) over time: 

λG  = 1 2 3( * * *... )t
tλ λ λ λ  or equivalently 

λG  = ( )
1

1 2 3* * *... t
tλ λ λ λ  

 The geometric mean will be less than the arithmetic mean when there is stochasticity.  Let’s 
run through an example.  Suppose an endangered population grows at a constant λ=1.05; we would 
expect a 5% increase per year, so that in 16 years a population of 100 would have an expected size  
of  

  N16 = 100 * 1.0516 = 218 

 Now suppose instead that the population growth alternated each year between λ = 1.55 and 
λ = 0.55.  The arithmetic mean of the growth rate is still 1.05 [from (1.55+0.55)/2].  But the growth 
of the average population is governed by the geometric mean which is 

  1.55*0.55 =0.923. 

After 16 years, the expected population size would be 

 

  N16 = 100 * 1.558 * 0.558 = 28.   

This is the same as projecting all 16 years with the geometric mean: 100 * 0.92316
  = 28. 

 A population of 28 is a lot less than the 218 expected from the arithmetic mean!  The 
variation in population growth leads to a likely decline for the population, even though the 
deterministic growth rate implies that the population should increase substantially.   

 An equivalent way to calculate the geometric mean population growth rate from a time 
series takes advantage of the mathematical properties of good old [r=ln(λ)]: 

1. Calculate r for each interval by ln (Nt+1/Nt).   

 2. Take the arithmetic mean of all of the r’s to obtain r . 

 3. Convert the r back to λ (by way of λ= er) and you’ve got your λG. 



Another way to see the phenomenon (from Mills 2007): 

 

 



Computer Software 
 

PopGrowthAnalysis 

Visual Basic Program created by J. S. Horne, B. Dennis, J. Humbert, L. S. Mills, E. O. Garton. 

• This program is a user-friendly ‘front-end’ to interface with the freely available program R (R 
Development Core Team 2006; program available online). 

• Utilizes R contributed package PopGrowth4 

• Input data can be a tab-delimited text file or a Microsoft Excel spreadsheet 

• Allows user to fit several population growth models to time-series abundance data 

o Exponential growth with observation error (EGOE) 

o Exponential growth with process noise (EGPN) 

o Exponential growth state space (EGSS) 

o Ricker (logistic)-type density dependent growth 

o Gompertz density dependent growth 

o Theta-logistic density dependent growth 

• Provides selection criteria (Akaike’s Information Criteria) for EGPN, Ricker, Gompertz and 
Theta-logistic growth models 

• Provides relevant parameter estimates and measures of precision of these estimates 

• Enables user to easily implement Viable Population Monitoring (Staples et al. 2005) based on 
parameter estimates from EGPN and EGSS models 

• Provides residuals from fitted models for investigating effects of environmental covariates and 
assessing correlations among populations 

 



MetaPVA 

Visual Basic Program in development by J. S. Horne, J. Tracey and E. O. Garton. 

• Initiated (Before GRIP!)  to allow users to easily implement several methods of sensitivity 
analysis 

• Based on stochastic metapopulation projection model analogous to that used in RAMAS 
Metapop 

• Utilizes R contributed package Sensitivity 

• Currently allows more flexibility in how parameters are sampled and automates the sensitivity 
analysis 



BACKGROUND AND ANALYTICAL METHODS FOR POPULATION VIABILITY ANALYSES 

 
 

I.  What is PVA?  What does one look like? 

Population viability analysis (PVA) comprises a set of analytical and modeling approaches for 
assessing the risk of extinction.  It has been used to develop theory, to analyze population data and 
project trends, and to make policy decisions (Beissinger 2002).  From its roots in early efforts to 
determine minimum viable population (MVP) sizes for imperiled species, PVA has developed into 
a powerful, quantitative tool for modeling population growth and persistence.  The improvement in 
computational capabilities in recent years has allowed PVA to incorporate increasing complexity in 
population structures, processes, and spatial scales.   

Computer simulation modeling, using either generic or customized computer programs, is the core 
of PVA.   On the basis of a set of demographic, life history, and environmental parameters specified 
by the user, the computer program creates a simulated population and steps it through annual cycles 
of reproduction and death until either extinction occurs or a specified time limit is reached. The 
program repeats this process for many simulated populations, and combines the results to produce 
estimates of the likelihood of specific outcomes. Simulation programs may be modified to include 
genetic factors, random environmental fluctuations, and catastrophic events, all of which are 
allowed to interact with one another. They can be used to predict effects of alternative scenarios on 
the population’s genetic variability as well as its size.  PVA is useful not only for predicting a 
population’s fate or evaluating viable population sizes, but also for deciding how to use resources 
most efficiently in conservation efforts.  By constructing “what-if” scenarios one can predict the 
impact of various potential management actions, and thus their cost effectiveness.  PVAs have thus 
provided ecologists and managers with a framework for evaluating population declines and 
quantifying factors that threaten populations (Boyce 1992, Burgman et al. 1993, Brook et al. 2000, 
Akçakaya and Sjögren-Gulve 2000, Beissinger and McCullough 2002, Morris and Doak 2002).   

Because habitat patchiness and landscape patterns have striking and long-lasting effects on 
population dynamics (Hanski and Gilpin 1991, Hanski 1998, Harrison and Bruna 1999, 
Lindenmayer et al. 2001), ecologists have added increasing spatial realism to their models.  PVA 
models have expanded from a single-population focus to include multiple populations and explicit 
spatial structure (Lacy 1993, Lamberson et al. 1994, LeHaye et al. 1994, Dunning et al. 1995).  One 
limitation of some metapopulation models is that they treat habitats as binary, with suitable patches 
surrounded by a matrix of unsuitable habitat types.  In reality, matrix habitats are often capable of 
supporting some individuals, suggesting that models should treat landscapes as mosaics of patches 
of differing quality (Norton et al. 2000, Ricketts 2001).  Another limitation is that although 
landscape changes through time strongly affect population dynamics (Fahrig 1992, Fahrig and 
Merriam 1994), most PVA models treat landscapes as unchanging.  

Several PVA-based modeling approaches now offer more promising spatiotemporal analyses.  For 
example, Akçakaya and colleagues are developing software that links transitional dynamics of the 
landscape with demographic models.  Their software builds on the landscape succession model 



LANDIS (Mladenoff et al. 1996) and the metapopulation package RAMAS GIS (Akçakaya 2000a).  
Changes in the landscape brought about by management actions and plant growth are summarized 
as a time series of habitat patches (Akçakaya 2001).  Habitat-specific demography for the taxon of 
interest is then modeled for each time step based on observed demographic rates in different stand 
types.  Demographic projections are therefore based on both local and landscape features.  This 
combination is satisfying theoretically because it permits a variety of habitat patches that differ in 
quality and it allows habitat distribution and quality to change through time.  In the context of 
management, this approach is also satisfying because many management actions require or cause 
continual changes in stand dynamics and landscape structure (e.g. managed fire, logging, and 
thinning: stand attributes change for decades following each perturbation).   

Interpretation of PVA results is complicated by uncertainties inherent to modeling.  Model 
performance, i.e. the likelihood of capturing observed dynamics or predicting dynamics accurately, 
is affected both by model structure (temporal and spatial detail) and by uncertainty in the data 
(Mills et al. 1996, Ludwig 1999, White 2000, Cross and Beissinger 2001).  As more structural 
details are added to a model, the model becomes more realistic at the cost of decreased generality 
and increased parameter uncertainty.  For example, as separate sets of vital rates (survival rates, 
fecundities, dispersal rates) are estimated for each age class or sex, and as populations are defined 
more locally, the realism of the model increases.  But in some cases the additional parameters may 
actually reduce model performance because each parameter is estimated based on a smaller sample 
size, and hence may have higher uncertainty accruing from sampling error.  The wise use of 
population models requires assessment of how model structure and data uncertainty affect model 
outcomes.  In the case of species in fragmented landscapes, it is particularly important to know 
whether habitat-specific demographic information is required to produce reliable predictions.  
Modelers face three basic options when modeling a species living in a patchy landscape: (1) to 
ignore the spatial heterogeneity and treat the species of interest as one unified population, (2) to 
allow different demographic rates in different patch types, or (3) to allow both spatial and temporal 
landscape dynamics in which there are stand-specific demographic rates and stand distribution 
changes through time.  The third approach is likely the most biologically realistic, but it is also 
much more data-hungry than are the first two approaches.   

Population parameters such as birth rates and mortality rates vary through time and in different 
habitats (process variance).  Even our best ecological methods provide us with estimates, not 
certainty, about these vital rates; the uncertainty associated with each estimate is sampling variance.  
Separating process and sampling variance can improve model performance (Gould and Nichols 
1998, Morris and Doak 2002).  Another data uncertainty problem arises when data are collected 
without model requirements in mind, which can result in a mismatch between model assumptions 
and data attributes.  When data are insufficient for modeling, ecologists are forced to guess or to 
substitute parameter values from populations in other locations or even from other species.  Because 
both sampling and process variance can bias risk assessment (Taylor 1995, Ludwig 1999, White 
2000, Mills and Lindberg 2002), it is important to evaluate model reliability given data uncertainty.   

PVA models can be used to produce comparative estimates, such as the relative increase in 
extinction risk due to different stressors.  Such relative measures are less sensitive to uncertainties 
in the data than are absolute measures such as risk of extinction (Lindenmayer and Possingham 
1996, Hanski 1997, Akçakaya and Raphael 1998).  At present, PVA models are being widely used 



to address risks to populations, but few of these models contain explicit or extensive analysis of the 
effects of model structure and data uncertainty on model results.  That is problematic in the context 
of modeling to provide management information about threatened species, because it is not clear 
that the model outcomes truly reflect or predict population dynamics, rather than simply reflecting 
data uncertainty and model structure (Ludwig 1999, White 2000).   

A number of approaches have been developed by various researchers to different levels of 
spatiotemporal complexity, uncertainty, management options.  Commonly used modeling 
approaches include matrix models, diffusion analysis, Bayesian approaches, and individual-based 
models.  Each type requires different data, and may answer different questions.  Even within a 
particular class of PVA, each single-species model is unique, depending on the demographic 
characteristics, management issues, and amount of data available for that species. 

We present here the mechanics and examples of two types of PVA that we will use for estimating 
extinction, recovery, and management impacts for listed species on DoD lands.  Our analysis will 
focus on matrix models, which we have used extensively in our work, and individual-based models, 
which are promising methods for including spatial and demographic complexity. 

 

II.  Stochastic Matrix Models for PVA 

A critical component of PVA is estimating the number of individuals Nt in a population at some 
time t in the future.  Matrix models have long been used for estimating the most likely size of a 
population based on a straightforward relationship between age (or stage)-specific birth rates b and 
death rates d in a population and its future size (Leslie 1945).  These models assume that 
individuals in a population can be categorized into c = 0, 1, … M discrete classes based on age, life 
history stages, sex, etc.  Because many populations go through distinct birth pulses, matrix models 
treat time as a discrete process with intervals corresponding to the time between birth pulses, 
typically 1 year for vertebrates.  Each class of individuals has a unique survival rate sc and fecundity 
Fc = scbc+1 during each time step.  The survival rate is simply the proportion of individuals 
surviving from time t to t +1 and fecundity is the number of recruits per individual into the next 
time step.   

 

In general, it is easy to see how the number of individuals n of class c + 1 at time t + 1 is  

nc + 1, t + 1 = scnc,t           (1) 

and the number of recruits is 

tc

M

c
ct nFn ,

0
1,0 ∑

=
+ = .           (2) 

We can combine equations 1 and 2 into a single equation using matrices.  For example, if there are 
4 classes of individuals,  
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Equation 3, known as the Leslie matrix population projection model, can be written more compactly 
using matrix and vector notation as nt + 1 = Lnt, where L is the population projection matrix. 

A deterministic analysis of populations can be accomplished using the Leslie matrix projection 
model with temporally constant survival and fecundity.  However, if vital rates (i.e., survival and 
fecundity) fluctuate under varying environmental conditions, it is important to incorporate this 
variability into population projections (Morris and Doak 2002, Caswell 2001).  A stochastic matrix 
model can be formulated by assuming that vital rates arise from a multivariate distribution and that 
each projection matrix L at time t is a random draw from this distribution. A variety of distributions 
have been used to characterize vital rates with the most common being the beta distribution for 
survival rates and the gamma or lognormal distributions for fecundity rates (Fieberg and Ellner 
2001), although uniform distributions are often used when data for estimating the mean and 
variance are limited. 

Once a particular distribution has been decided for each vital rate, simulations can be used to 
calculate the long-term population trend over a sequence of time.  Under the conditions of a 
stochastic matrix model outlined above, the log final population density at time t is approximately 
normally distributed with mean ( ) tN μ+0log  and variance , where t2σ μ  is the long-term 
stochastic growth rate of the population (Morris and Doak 2002).  An estimate of μ  can be 
obtained by projecting population growth over many (e.g., tens of thousands) time steps using 
projection matrices drawn at random from the specified distribution(s) at each time step.  The 
estimate is calculated as 

[ ]∑
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+
−

=
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1
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1
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T

t
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T
μ           (4) 

Estimates of logμ  can be used to determine whether a population is likely to grow or decline over 
the long term in a stochastic environment. 

In addition to an estimate of the population trend, PVA is often interested in the probability that 
quasi-extinction (i.e., population falls below some critical size NEXT) will occur prior to a specified 
time in the future.  Again, this probability pEXT can be estimated using simulations.  If the 
population projection model is run for multiple realizations, then the fraction of realizations that the 
population size ≤  NEXT during or before time t gives the probability of quasi-extinction. 

The previous description outlines the basic structure of a stochastic matrix model for PVA.   
Depending on the particular species, environmental conditions, and available data, these models can 
be extended to account for density dependence (e.g. Mills et al. 1996, Ratner et al. 1997) 
correlations over time and among vital rates (Ferson and Burgman 1995), as well as metapopulation 



dynamics (Hanski and Gilpin 1991, Hanski 1998, Harrison and Bruna 1999, Lindenmayer et al. 
2001). 

 

III.  Individual-based Models for PVA 

An alternative to stochastic matrix models that treat individuals as belonging to homogeneous 
classes with common vital rates are stochastic models that track the fates of individuals.  By 
tracking each member of a population through space and time, individual-based models (IBMs) 
more easily accommodate key population characteristics such as demographic stochasticity, 
complex social structure, and unique life-history strategies.  Additionally, by making the models 
spatially explicit, individual movements within a structured landscape can be incorporated.  
Because the structure of IBMs can be highly flexible, they tend to be tailored to specific species and 
systems.  Thus, instead of describing a general model structure that could be used for any 
population, we provide a specific example of an IBM developed for the red-cockaded woodpecker 
in the southeastern United States (Letcher et al. 1998, Walters et al. 2002). 

The IBM for red-cockaded woodpecker population dynamics was developed to incorporate the 
effects of complex social interactions and habitat fragmentation in population projections.  Initial 
conditions for the model were set by specifying the number and spatial distribution of red-cockaded 
woodpecker territories on the landscape.  Territories were then either left vacant or populated with 
either a breeding pair or a solitary male.  The fates of these initial individuals, as well as any young 
produced, were followed for 100 years.  Fates were determined by stochastic processes governing 
survival, dispersal, social status, and reproduction (Figure 1). 

Individual females in the population occupied 1 of 3 age/social classes including: (1) fledgling – 
age <1 year (2) floater – nonbreeding adult in search of a territory with a solitary male (3) breeder – 
breeding adult occupying a territory with a male.  Individual males in the population occupied 1 of 
5 age/social classes including: (1) fledgling – age <1 year (2) floater – nonbreeding adult in search 
of an unoccupied territory (3) helper – nonbreeding adult assisting a breeding pair with the care of 
young (4) solitary – nonbreeding adult occupying a territory (5) breeder – breeding adult occupying 
a territory.  Movements within the landscape and transitions between classes were dictated by 
random draws from appropriate probability distributions as well as the spatial arrangement and 
availability of occupied/unoccupied territories.  Survival of individuals was a stochastic event 
dictated by unique survival probabilities for each age/social class.  Reproduction of each breeding 
pair was a function of the male’s age, the female’s age, and the number of helpers in a territory.   

With several replicate realizations, a mean annual population growth rate can be calculated using 
equation (4) as well as the percentage of original territories remaining after 100 years.  These 
metrics then serve as the basis for investigating population viability under alternate scenarios of 
initial conditions (i.e., population size, distribution of territories, available habitat, etc.) and 
demographic rates (i.e., survival, reproduction, etc.). 

 



IV.  Comparison of Matrix Models and Individual-Based PVA 

In general, IBM PVAs are most suited to species with complex life histories or those for which a 
great deal is known about their demography, individual behavior, and spatial use.  For species with 
simpler life histories, or when data available for a species are less complete, life stage-based matrix 
models are more appropriate.  Either approach could provide unbiased estimates of future 
population sizes under alternative management choices but our project will compare the success of 
each approach when applied in an ex post facto analysis to real species for which management 
actions were taken.  We will use this analysis to examine the performance of each approach and 
explore their potential for evaluating consequences of management alternatives for listed species 
occurring on DoD facilities.   
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PopGrowth_beta: Installation and Tutorial 
 

 
 
PopGrowth_beta.exe is a program written in Visual Basic 6.  It is a “front-end” user-friendly 
interface for analyzing time-series data common to ecological investigations. 
 
When running PopGrowth_beta.exe, the free statistical computing software R (http://cran.r-
project.org/) and R contributed package PopGrowth4 is used for many of the calculations.  This is 
done in the background and users do not need to be familiar with R to use PopGrowth_beta.exe. 
 
For programs written in Visual Basic (e.g., PopGrowth) to be able to open and communicate with 
R, an “R-(D)COM server” needs to be installed. 
 

“R-(D)COM is a programmation interface to COM and DCOM (ex ActiveX; Microsoft 
distributed object interface) to access the R calculation engine. As such, it runs only under the 
Windows environment. The R-(D)COM server can be used to build a R GUI client using tools 
like Microsoft C++, Microsoft Visual Basic, or Microsoft Excel. Currently, a R-Excel addin is 
provided, as well as some examples to use Visual Basic as a frontend.” (From 
http://www.sciviews.org/_rgui/projects/RDcom.html) 

 
 
 
Steps to install PopGrowth_beta.exe 
 

1. Make sure R is installed on the computer.  If not you can download an installation program 
free from (http://cran.r-project.org/).  The program was written with version 2.6.1 and has 
not been tested with other versions. 

2. Install the R contributed package "PopGrowth4" by putting the folder “PopGrowth4” in the 
"C:/ProgramFiles/R/R-2.6.1/library" folder.  See the ‘Packages’ link at http://cran.r-
project.org/ to learn more about R contributed packages. 

3. Make sure the R – (D)COM server is installed.  There will be a folder called ‘(D)COM 
Server’ in "C:/ProgramFiles/R/” if installed.  If not already installed, run RSrv250.exe 

**Note: R – (D)COM comes with an addin that allows communication between 
Microsoft Excel and R.  This is NOT needed to run PopGrowth_beta.exe.  It has 
been my experience that installing this addin does strange things when Microsoft 
Excel is opened.  To avoid this, do not select the check boxes for “RExcel:Excel 
Add-In” or “RExcel Sample Files” 



4. Lastly, make sure there is a file ‘MSHFLXGD.OCX’ in ‘System32’ windows folder.  This 
file comes with many software programs but if it is not in your ‘System32’ windows folder, 
put it there and register it.  There are several ways to register a *.ocx file.  I found the 
following worked… 

a. Get a command prompt.  Go to ‘Start > Programs > Accessories > Command 
Prompt’ 

** Note if you are running Windows Vista, right click on ‘Command Prompt’ and select 
‘Run as administrator’** 

b. Navigate to the ‘System32’ directory using the command ‘cd’.  To go up in the 
directory, type ‘cd..’ until you get to ‘C:\’.  Then type ‘cd windows’ and press Enter.  
Then type ‘cd system32’ and press Enter.  The command prompt should read 
‘C:\Windows\System32>’ 

c. Type ‘regsvr32 mshflxgd.ocx’.  You should receive a message confirming… 
‘DllRegisterServer in mshflxgd.ocs succeeded’. 

5. Place the file PopGrowth_beta.exe where you want the program to be opened from and 
double-click to run the program. 



OPENING AND LOADING INPUT DATA 
 
Open an input file by choosing File > Open 
 
The input file can be a tab-delimited text file or a Microsoft Excel Workbook.  Two of the columns 
of data should correspond to time and abundance. 
  
 

 
 
If the selected file is a Microsoft Excel Workbook, load the data by clicking on the appropriate 
worksheet name. 
 
You can change the y-axis (abundance) or the x-axis (time) by selecting the appropriate column and 
clicking the “Apply current selection…” button. 
 





ANALYSIS OPTIONS 
 
PopGrowth contains two main analysis options including: (1) Fitting various growth models to the 
time series of abundance data and (2) Viable population monitoring. 
 
A.  Fitting Growth Models 

 
PopGrowth fits 3 stochastic population growth models without density dependence: 

1. Exponential growth with observation error 
2. Exponential growth with process noise 
3. Exponential growth with observation error and process noise (State Space) 

 
PopGrowth fits 3 stochastic population growth models incorporating density dependence: 

4. Ricker 
5. Gompertz 
6. Theta-logistic 

 
These models are described in more detail under OUTPUT section. 
 
To fit any of these models select Analyses > Fit Growth Model(s) 
 
Select the appropriate check boxes next to the models you wish to fit then click Next >>. 
 

 
 

• Parameter estimates and each models’ Akaike Information Criteria can be saved to a text 
file using Output > Save text output 

• If one of the density dependent models is selected an additional input form will appear 
asking for parameters related to confidence intervals calculated using parametric 
bootstrap 

 



 
 
For exploratory analyses, 300 bootstrap replicates is sufficient and quite a bit faster. 



 
 

B.  Viable Population Monitoring 

 

Viable population monitoring is a risk based monitoring strategy described by Staples et al. 
004 (Conservation Biology 19:1908 -1916).  It estimates probability of “quasi-extinction” 
through time. 

To calculate these probabilities, select Analyses > Viable Population Monitoring 

You will need to specify 3 parameters: 

1. The lower threshold population size.  This is the quasi-extinction threshold. 

2. The time in the future for which the probability of reaching the threshold applies.  
The output probabilities will be the “probability that the population will reach or 
fall below the threshold within the specified time in the future. 

3. Model parameters (which determine the probability of extinction) are estimated 
with each additional data point in the time series.  You will need to specify the 
amount of time since the first observation to begin calculating these parameters 
and estimating the probability of reaching the threshold.  For example, with a 
data set that is 20 years in length, if you specify 10, then the parameters will be 
estimated with the first 10 years of data and a probability of reaching the 
threshold will be calculated.  The next probability is calculated by estimating 
parameters with the first 11 years of data, then the first 12 years of data, and so 
on. 

The probability of extinction is based, in part, on the estimate of process variance.  This 
estimate can be obtained using either the exponential growth model with process noise only 
(EGPE) or the exponential growth model with process noise and observation error (EGSS). 
 

 
 



For certain parameter estimates, an approximation needs to be implemented to calculate the 
probability of extinction.  This is not necessarily a problem but the program alerts the user 
of this.  This may happen several times during the calculations.  Just select OK each time the 
message box appears. 
 

 
Graphical output is displayed on the Main form.  Text output of Viable Population 
Monitoring (for making your own plots) can be save by Output > Save text output 
 

 
 
 

 



OUTPUT 

All output is saved as a tab-delimited text file.  Values from these text files can be cut and pasted 
into Excel. 

Output will contain: 

1. The input data 

2. Akaike’s Information Criteria corrected for small sample bias (AICc) for the EGPE, Ricker, 
Gompertz, and theta-logistic models.  AICc values are not comparable for the EGOE and 
EGSS models. 

3. Estimated model parameters 

a. Exponential growth with observation error (EGOE): 3 parameters 0N , μ and τ  

( ) ( )0ln lntN N tμ= + + F  

where, ( )2~ 0,F normal τ ;  is the estimated initial abundance; 0N μ  is the 

trend; 2τ is the “sampling variance” due to observation error. 

 

b. Exponential growth with process noise (EGPE): 2 parameters μ and σ  

ln ( ) ( )d N t dt dB tμ= +  

where,  ~ normal(0, ); )(tdB dt2σ 2σ is the “process variance” related due to 
environmental variation in population growth rates 

 

c. Exponential growth with process noise and observation error (EGSS): 4 parameters 
0N , μ , σ , and τ  

ln ( ) ( )d N t dt dB tμ= + ,  unobserved stochastic population growth 

( ) ln ( ) iY t N t F= +     observed abundance 

 



d. Ricker: 3 parameters a, b, and σ  

 

( )1ln t t tN N a bN E+ = + +  

where, ( )2~ 0,E normal σ  

 

e. Gompertz: 3 parameters a, b, and σ  

( ) ( )1ln lnt t tN N a b N E+ = + × +  

 

f. Theta-logistic: 4 parameters a, b, θ and σ  

( )1ln t t tN N a bN Eθ
+ = + +  

 

4. Residuals for models EGPE, Ricker and Gompertz.  These can be used to identify 
correlations among populations in a metapopulation or investigate possible influences of 
environmental covariates on growth rates. 

 



Example output from fitting all models to data “Wolf2.xls” 
 
Data: 
----------------- 
Time Abundance 
1989 4.91 
1990 2.47 
1991 2.8 
1992 3.62 
1993 2.53 
1994 2.23 
1995 2.82 
1996 2.75 
1997 2.33 
1998 3.04 
1999 1.59 
2000 1.2 
============================================================================= 
Information Theoretic Model Selection (Akaike's Information Criteria) 
--------------------------------------- 
Model  AICc 
EGPE  12.074 
Ricker  10.97 
Gompertz 12.407 
Theta-L  15.395 
============================================================================= 
 
Model fit of exponential growth with observation error 
-------------------------------------------------------------------------- 
   Parameter estimate  Standard Error 
Init_abund  3.7775785048 
Trend (mu)  -0.0720465574  0.0218640798 
Sampling variance 0.068359432 
Process variance NA: assumed = 0 
============================================================================= 
 
Model fit of exponential growth with process noise 
--------------------------------------------------------------------------- 
   Parameter estimate  Standard Error 
Init_abund  4.91 
Trend (mu)  -0.1280865805  0.1031663266 
Sampling variance NA: assumed = 0 
Process variance 0.1170762003 
============================================================================= 
 
Model fit of exponential growth with observation error and process noise 
--------------------------------------------------------------------------- 
   Parameter estimate  Standard Error 
Init_abund(ML)  3.7775327569 
Trend [mu(ML)]  -0.0720449931 
Sampling variance (ML) 0.056968608 
Process variance (ML) 0.0000000001 
------------------------------ 
Init_abund(REML)  4.0285257157 
Trend [mu(REML)] -0.0953790647  0.056132318 
Sampling variance(REML) 0.0439179546 
Process variance(REML) 0.0295019512 
============================================================================= 
 



Model fit of Ricker density dependent growth with process noise 
--------------------------------------------------------------------------- 
   P arameter estimate  95% Lower C.I. 95% Upper C.I. 
a_hat    0.5545029297  0.2093225381 1.0808208086 
b_hat    -0.2415080287  -0.4306277829 -0.1209474678 
sigma_hat   0.2595369277  0.1369360956 0.3526803471 
============================================================================= 
 
Model fit of Gompertz density dependent growth with process noise 
--------------------------------------------------------------------------- 
   P arameter estimate  95% Lower C.I. 95% Upper C.I. 
a_hat    0.5068333776  0.1816265227 1.046157398 
b_hat    -0.6342508799  -1.1703701546 -0.3225267201 
sigma_hat   0.2770553233  0.1457821309 0.3498999459 
============================================================================= 
 
Model fit of Theta-logistic density dependent growth with process noise 
--------------------------------------------------------------------------- 
   P arameter estimate 
a_hat    0.1159992976 
b_hat    0.014549738 
theta_hat    2.557183594 
sigma_hat   0.2501186494 
============================================================================= 
 
Residuals from EGPE fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)]  Residuals 
1989 4.91 1.59127394180643  -0.687055791166543 -0.558969210710864 
1990 2.47 0.904218150639886 0.125401266541272 0.253487846996952 
1991 2.8 1.02961941718116  0.256854608656521 0.384941189112201 
1992 3.62 1.28647402583768  -0.358254723098251 -0.230168142642571 
1993 2.53 0.928219302739429 -0.126217717267401 1.86886318827809E-03 
1994 2.23 0.802001585472027 0.234735299477995 0.362821879933674 
1995 2.82 1.03673688495002  -2.51359732715423E-02 0.102950607184137 
1996 2.75 1.01160091167848  -0.165732644100871 -3.76460636451912E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.394075828296201 
1998 3.04 1.11185751541813  -0.64812349918599 -0.520036918730311 
1999 1.59 0.46373401623214  -0.281412459438186 -0.153325878982506 
2000 1.2 0.182321556793955 
 
Residuals from Ricker fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)]  Residuals 
1989 4.91 1.59127394180643  -0.687055791166543 -5.57543000175069E-02 
1990 2.47 0.904218150639886 0.125401266541272 0.16742316768116 
1991 2.8 1.02961941718116  0.256854608656521 0.378574159264859 
1992 3.62 1.28647402583768  -0.358254723098251 -3.84985889622483E-02 
1993 2.53 0.928219302739429 -0.126217717267401 -6.97053344059778E-02 
1994 2.23 0.802001585472027 0.234735299477995 0.218795273731736 
1995 2.82 1.03673688495002  -2.51359732715423E-02 0.101413737910641 
1996 2.75 1.01160091167848  -0.165732644100871 -5.60884949271466E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.27420002496349 
1998 3.04 1.11185751541813  -0.64812349918599 -0.468442021691507 
1999 1.59 0.46373401623214  -0.281412459438186 -0.451917623547499 
2000 1.2 0.182321556793955 
 



Residuals from Gompertz fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)]  Residuals 
1989 4.91 1.59127394180643  -0.687055791166543 -0.184622270984678 
1990 2.47 0.904218150639886 0.125401266541272 0.19206904661337 
1991 2.8 1.02961941718116  0.256854608656521 0.403058252377011 
1992 3.62 1.28647402583768  -0.358254723098251 -4.91408178227695E-02 
1993 2.53 0.928219302739429 -0.126217717267401 -4.43271853567864E-02 
1994 2.23 0.802001585472027 0.234735299477995 0.23657213314875 
1995 2.82 1.03673688495002  -2.51359732715423E-02 0.125581930644237 
1996 2.75 1.01160091167848  -0.165732644100871 -3.09572533505152E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.29564856323644 
1998 3.04 1.11185751541813  -0.64812349918599 -0.449760269294766 
1999 1.59 0.46373401623214  -0.281412459438186 -0.494122129210293 
2000 1.2 0.182321556793955 



Example output from Viable Population Monitoring with data “Bear2.xls” 
 
Data: 
----------------- 
Time Abundance 
1959 44 
1960 47 
1961 46 
1962 44 
. 
. 
. 
1997 99 
============================================================================= 
 
Information Theoretic Model Selection (Akaike's Information Criteria) 
--------------------------------------- 
Model  AICc 
============================================================================= 
 
Viable Population Monitoring (VPM) 
--------------------------------------------------------------------------- 
Probability of reaching population size of 30 within a time period of 50 
 
Time Abundance mu(EGPN) variance(EGPN) Probability(EGPN) m u(EGSS) variance(EGSS)
 Probability (EGSS) 
1959 44 
1960 47 
1961 46 
1962 44 
1963 46 
1964 45 
1965 46 
1966 40 
1967 39 
1968 39 
1969 42 
1970 39 
1971 41 
1972 40 
1973 33 
1974 36 
1975 34 
1976 39 
1977 35 
1978 34 
1979 38 -0.00733 0.00708 0.840179 -0.015024 0 1 
1980 36 -0.009556 0.00683 0.908833 -0.01364 0.000157 1 
1981 37 -0.007876 0.006567 0.867629 -0.011427  0.000532 0.993539 
1982 41 -0.00307 0.006799 0.673913 -0.007067  0.001384 0.700152 
1983 39 -0.005026 0.006596 0.769062 -0.006511  0.001436 0.745598 
1984 51 0.005905 0.009308 0.299205 0.001713  0.003581 0.160794 
1985 47 0.002537 0.009231 0.44658 0.001826  0.003458 0.21819 
1986 57 0.009587 0.010218 0.18133 0.007211  0.004561 0.054431 
1987 48 0.003108 0.011015 0.457287  0.003863  0.003862 0.16886 
1988 60 0.010695 0.012291 0.184336  0.008067 0.0041 0.024796 
1989 65 0.013007 0.012028 0.115301  0.011319  0.004746 0.011377 
1990 74 0.01677 0.012066 0.050444  0.015218 0.00566 0.003957 
1991 69 0.01406 0.011912 0.083924  0.014103 0.005278 0.006062 
1992 65 0.011824 0.011705 0.122378  0.012194 0.005196 0.013263 



1993 57 0.007614 0.011953 0.255309  0.008472 0.00587 0.078479 
1994 70 0.013266 0.012719 0.098905  0.011676  0.005265 0.009725 
1995 81 0.016952 0.012845 0.04191  0.015378  0.006059 0.002893 
1996 99 0.021917 0.0134 0.011682 0.020667 0.008302 0.001326 
1997 99 0.02134 0.013051 0.011382  0.021091  0.008222 0.001132 
============================================================================= 
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Population Viability Analysis and Population Growth Models:  An Overview 

  

  

   



  

   

   



   

   

   



   

   

   



   

   



PopGrowth:   
Software for Fitting Population Growth Models to Time Series Abundance Data 
 

   

  

   



   

   

   



   

   

   



   

 



   

Appendix E.  Other Supporting Material 
 
PopGrowth_beta: Installation and Tutorial 

 
The most recent version of PopGrowth can be downloaded from: 
http://www.cnr.uidaho.edu/population_ecology/ 
 
PopGrowth_beta.exe is a program written in Visual Basic 6.  It is a “front-end” user-friendly 
interface for analyzing time-series data common to ecological investigations. 
 
When running PopGrowth_beta.exe, the free statistical computing software R (http://cran.r-
project.org/) and R contributed package PopGrowth4 are used for many of the calculations.  This 
is done in the background and users do not need to be familiar with R to use 
PopGrowth_beta.exe. 
 
For programs written in Visual Basic (e.g., PopGrowth) to be able to open and communicate 
with R, an “R-(D)COM server” needs to be installed. 
 
“R-(D)COM is a programmation interface to COM and DCOM (ex ActiveX; Microsoft 
distributed object interface) to access the R calculation engine. As such, it runs only under the 
Windows environment. The R-(D)COM server can be used to build a R GUI client using tools 
like Microsoft C++, Microsoft Visual Basic, or Microsoft Excel. Currently, a R-Excel addin is 
provided, as well as some examples to use Visual Basic as a frontend.” (From 
http://www.sciviews.org/_rgui/projects/RDcom.html) 
 
Steps to install PopGrowth_beta.exe 
 
1.) Make sure R is installed on the computer.  If not, you can download an installation program 
free from (http://cran.r-project.org/).  The program was written with version 2.6.1 and has not 
been tested with other versions.  It will not work with version 2.8 or greater. 
 
2.) Install the R contributed package "PopGrowth4" by putting the folder “PopGrowth4” in the 
"C:/ProgramFiles/R/R-2.6.1/library" folder.  See the ‘Packages’ link at http://cran.r-project.org/ 
to learn more about R contributed packages. 
 
3.) Make sure the R – (D)COM server is installed.  There will be a folder called ‘(D)COM 
Server’ in "C:/ProgramFiles/R/” if installed.  If not already installed, run RSrv250.exe 
 
**Note: R – (D)COM comes with an addin that allows communication between Microsoft Excel 
and R.  This is NOT needed to run PopGrowth_beta.exe.  It has been my experience that 

 



   

installing this addin does strange things when Microsoft Excel is opened.  To avoid this, do not 
select the check boxes for “RExcel:Excel Add-In” or “RExcel Sample Files” 
 
4.) Lastly, make sure there is a file ‘MSHFLXGD.OCX’ in ‘System32’ windows folder.  This 
file comes with many software programs but if it is not in your ‘System32’ windows folder, put 
it there and register it.  There are several ways to register a *.ocx file.  I found the following 
worked… 
 

a. Get a command prompt.  Go to ‘Start > Programs > Accessories > Command Prompt’ 
b. ** Note if you are running Windows Vista, right click on ‘Command Prompt’ and select 

‘Run as administrator’** 
c. Navigate to the ‘System32’ directory using the command ‘cd’.  To go up in the directory, 

type ‘cd..’ until you get to ‘C:\’.  Then type ‘cd windows’ and press Enter.  Then type ‘cd 
system32’ and press Enter.  The command prompt should read ‘C:\Windows\System32>’ 

d. Type ‘regsvr32 mshflxgd.ocx’.  You should receive a message confirming… 
‘DllRegisterServer in mshflxgd.ocs succeeded’. 

e. Vista users:  If the registration does not succeed, you might try restarting you computer 
and repeat steps 2 and 3. 

 
5.)  Place the file PopGrowth_beta.exe where you want the program to be opened from and 
double-click to run the program. 
 
 
 
OPENING AND LOADING INPUT DATA 
 
Open an input file by choosing File > Open 
 
The input file can be a tab-delimited text file or a Microsoft Excel Workbook.  Two of the 
columns of data should correspond to time and abundance.  For this version, there should be no 
missing values in the data. 
  
 

 



   

 
 
If the selected file is a Microsoft Excel Workbook, load the data by clicking on the appropriate 
worksheet name. 
 
You can change the y-axis (abundance) or the x-axis (time) by selecting the appropriate column 
and clicking the “Apply current selection…” button. 
 

 
 
ANALYSIS OPTIONS 
 
PopGrowth contains two main analysis options including: (1) Fitting various growth models to 
the time series of abundance data and (2) Viable population monitoring. 

 



   

 
A.  Fitting Growth Models 
 
PopGrowth fits 3 stochastic population growth models without density dependence: 

1. Exponential growth with observation error 
2. Exponential growth with process noise 
3. Exponential growth with observation error and process noise (State Space) 

 
PopGrowth fits 3 stochastic population growth models incorporating density dependence: 

4. Ricker 
5. Gompertz 
6. Theta-logistic 

 
These models are described in more detail under OUTPUT section. 
 
To fit any of these models select Analyses > Fit Growth Model(s) 
Select the appropriate check boxes next to the models you wish to fit then click Next >>. 
 

 
 

• Parameter estimates and each models’ Akaike Information Criteria can be saved to a text 
file using Output > Save text output 

• If one of the density dependent models is selected an additional input form will appear 
asking for parameters related to confidence intervals calculated using parametric 
bootstrap 

 

 



   

 
 
For exploratory analyses, 300 bootstrap replicates is sufficient and quite a bit faster. 
 
B.  Viable Population Monitoring 
  
Viable population monitoring is a risk based monitoring strategy described by Staples et al. 2004 
(Conservation Biology 19:1908 -1916).  It estimates probability of “quasi-extinction” through 
time. 
 
To calculate these probabilities, select Analyses > Viable Population Monitoring 
 
You will need to specify 3 parameters: 

1. The lower threshold population size.  This is the quasi-extinction threshold. 

2. The time in the future for which the probability of reaching the threshold applies.  The 
output probabilities will be the “probability that the population will reach or fall below 
the threshold within the specified time in the future. 

3. Model parameters (which determine the probability of extinction) are estimated with each 
additional data point in the time series.  You will need to specify the amount of time since 
the first observation to begin calculating these parameters and estimating the probability 
of reaching the threshold.  For example, with a data set that is 20 years in length, if you 
specify 10, then the parameters will be estimated with the first 10 years of data and a 
probability of reaching the threshold will be calculated.  The next probability is 
calculated by estimating parameters with the first 11 years of data, then the first 12 years 
of data, and so on. 

 
The probability of extinction is based, in part, on the estimate of process variance.  This estimate 
can be obtained using either the exponential growth model with process noise only (EGPE) or 
the exponential growth model with process noise and observation error (EGSS). 
 

 



   

 
 
For certain parameter estimates, an approximation needs to be implemented to calculate the 
probability of extinction.  This is not necessarily a problem but the program alerts the user of 
this.  This may happen several times during the calculations.  Just select OK each time the 
message box appears. 
 

 
Graphical output is displayed on the Main form.  Text output of Viable Population Monitoring 
(for making your own plots) can be save by Output > Save text output 
 

 

 



   

OUTPUT 
 
All output is saved as a tab-delimited text file.  Values from these text files can be cut and pasted 
into Excel. 
 
Output will contain: 

1. The input data 

2. Akaike’s Information Criteria corrected for small sample bias (AICc) for the EGPE, Ricker, 
Gompertz, and theta-logistic models.  AICc values are not comparable for the EGOE and 
EGSS models. 

3. Estimated model parameters 

a. Exponential growth with observation error (EGOE): 3 parameters , 0N μ and τ  

( ) ( )0ln lntN N tμ F= + +  

where, ( )2~ 0,F normal τ ;  is the estimated initial abundance; 0N μ  is the trend; 2τ is 

the “sampling variance” due to observation error. 

 

b. Exponential growth with process noise (EGPE): 2 parameters μ and σ  
ln ( ) ( )d N t dt dB tμ= +  

where,  ~ normal(0, ); )(tdB dt2σ 2σ is the “process variance” related due to 
environmental variation in population growth rates 

 

c. Exponential growth with process noise and observation error (EGSS): 4 parameters , 0N
σ , and τ  μ , 

ln ) ( )t dt dB tμ= + , unobserved stochastic population growth (d N
( ) ln ( )Y t N t F= +    observed abundance 

 
 
 

 



   

d. Ricker: 3 parameters a, b, and σ  
( )1ln t t tN N a bN E+ = + +  

where, ( )2~ 0,E normal σ  

 

e. Gompertz: 3 parameters a, b, and σ  
( ) ( )1ln lnt t tN N a b N E+ = + × +  

 

f. Theta-logistic: 4 parameters a, b, θ and σ  
( )1ln t t tN N a bN Eθ

+ = + +  

 

 

4. Residuals for models EGPE, Ricker and Gompertz.  These can be used to identify 
correlations among populations in a metapopulation or investigate possible influences of 
environmental covariates on growth rates. 
 

 



   

Example output from fitting all models to data “Wolf2.xls” 
Data: 
----------------- 
Time Abundance 
1989 4.91 
1990 2.47 
1991 2.8 
1992 3.62 
1993 2.53 
1994 2.23 
1995 2.82 
1996 2.75 
1997 2.33 
1998 3.04 
1999 1.59 
2000 1.2 
============================================================================= 
Information Theoretic Model Selection (Akaike's Information Criteria) 
--------------------------------------- 
Model  AICc 
EGPE  12.074 
Ricker  10.97 
Gompertz12.407 
Theta-L  15.395 
============================================================================= 
Model fit of exponential growth with observation error 
-------------------------------------------------------------------------- 
   Parameter estimate Standard Error 
Init_abund  3.7775785048 
Trend (mu)  -0.0720465574  0.0218640798 
Sampling variance 0.068359432 
Process variance NA: assumed = 0 
============================================================================ 
Model fit of exponential growth with process noise 
--------------------------------------------------------------------------- 
   Parameter estimate Standard Error 
Init_abund  4.91 
Trend (mu)  -0.1280865805  0.1031663266 
Sampling variance NA: assumed = 0 
Process variance 0.1170762003 
============================================================================= 
Model fit of exponential growth with observation error and process noise 
--------------------------------------------------------------------------- 
   Parameter estimate Standard Error 
Init_abund(ML)  3.7775327569 
Trend [mu(ML)]  -0.0720449931 
Sampling variance (ML) 0.056968608 
Process variance (ML) 0.0000000001 
------------------------------ 
Init_abund(REML) 4.0285257157 
Trend [mu(REML)] -0.0953790647  0.056132318 
Sampling variance(REML) 0.0439179546 
Process variance(REML) 0.0295019512 
============================================================================= 

 



   

Model fit of Ricker density dependent growth with process noise 
--------------------------------------------------------------------------- 
   Parameter estimate 95% Lower C.I. 95% Upper C.I. 
a_hat    0.5545029297  0.2093225381 1.0808208086 
b_hat    -0.2415080287  -0.4306277829 -0.1209474678 
sigma_hat   0.2595369277  0.1369360956 0.3526803471 
============================================================================= 
 
Model fit of Gompertz density dependent growth with process noise 
--------------------------------------------------------------------------- 
   Parameter estimate 95% Lower C.I. 95% Upper C.I. 
a_hat    0.5068333776  0.1816265227 1.046157398 
b_hat    -0.6342508799  -1.1703701546 -0.3225267201 
sigma_hat   0.2770553233  0.1457821309 0.3498999459 
============================================================================= 
Model fit of Theta-logistic density dependent growth with process noise 
--------------------------------------------------------------------------- 
   Parameter estimate 
a_hat    0.1159992976 
b_hat    0.014549738 
theta_hat   2.557183594 
sigma_hat   0.2501186494 
============================================================================= 
Residuals from EGPE fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)] Residuals 
1989 4.91 1.59127394180643 -0.687055791166543 -0.558969210710864 
1990 2.47 0.904218150639886 0.125401266541272 0.253487846996952 
1991 2.8 1.02961941718116 0.256854608656521 0.384941189112201 
1992 3.62 1.28647402583768 -0.358254723098251 -0.230168142642571 
1993 2.53 0.928219302739429 -0.126217717267401 1.86886318827809E-03 
1994 2.23 0.802001585472027 0.234735299477995 0.362821879933674 
1995 2.82 1.03673688495002 -2.51359732715423E-02 0.102950607184137 
1996 2.75 1.01160091167848 -0.165732644100871 -3.76460636451912E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.394075828296201 
1998 3.04 1.11185751541813 -0.64812349918599 -0.520036918730311 
1999 1.59 0.46373401623214 -0.281412459438186 -0.153325878982506 
2000 1.2 0.182321556793955 
 
Residuals from Ricker fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)] Residuals 
1989 4.91 1.59127394180643 -0.687055791166543 -5.57543000175069E-02 
1990 2.47 0.904218150639886 0.125401266541272 0.16742316768116 
1991 2.8 1.02961941718116 0.256854608656521 0.378574159264859 
1992 3.62 1.28647402583768 -0.358254723098251 -3.84985889622483E-02 
1993 2.53 0.928219302739429 -0.126217717267401 -6.97053344059778E-02 
1994 2.23 0.802001585472027 0.234735299477995 0.218795273731736 
1995 2.82 1.03673688495002 -2.51359732715423E-02 0.101413737910641 
1996 2.75 1.01160091167848 -0.165732644100871 -5.60884949271466E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.27420002496349 
1998 3.04 1.11185751541813 -0.64812349918599 -0.468442021691507 
1999 1.59 0.46373401623214 -0.281412459438186 -0.451917623547499 
2000 1.2 0.182321556793955 

 



   

 
Residuals from Gompertz fit 
--------------------------------- 
Time Abundance ln(Abund) ln[Lambda(t)] Residuals 
1989 4.91 1.59127394180643 -0.687055791166543 -0.184622270984678 
1990 2.47 0.904218150639886 0.125401266541272 0.19206904661337 
1991 2.8 1.02961941718116 0.256854608656521 0.403058252377011 
1992 3.62 1.28647402583768 -0.358254723098251 -4.91408178227695E-02 
1993 2.53 0.928219302739429 -0.126217717267401 -4.43271853567864E-02 
1994 2.23 0.802001585472027 0.234735299477995 0.23657213314875 
1995 2.82 1.03673688495002 -2.51359732715423E-02 0.125581930644237 
1996 2.75 1.01160091167848 -0.165732644100871 -3.09572533505152E-02 
1997 2.33 0.845868267577609 0.265989247840521 0.29564856323644 
1998 3.04 1.11185751541813 -0.64812349918599 -0.449760269294766 
1999 1.59 0.46373401623214 -0.281412459438186 -0.494122129210293 
2000 1.2 0.182321556793955 

 



   

Example output from Viable Population Monitoring with data “Bear2.xls” 
Data: 
----------------- 
Time Abundance 
1959 44 
1960 47 
1961 46 
1962 44 
. 
.. 
1997 99 
============================================================================= 
 
Information Theoretic Model Selection (Akaike's Information Criteria) 
--------------------------------------- 
Model  AICc 
============================================================================= 
Viable Population Monitoring (VPM) 
--------------------------------------------------------------------------- 
Probability of reaching population size of 30 within a time period of 50 
Time Abundance mu(EGPN) variance(EGPN) Probability(EGPN) mu(EGSS) variance(EGSS)
 Probability(EGSS) 
1959 44 
1960 47 
1961 46 
1962 44 
1963 46 
1964 45 
1965 46 
1966 40 
1967 39 
1968 39 
1969 42 
1970 39 
1971 41 
1972 40 
1973 33 
1974 36 
1975 34 
1976 39 
1977 35 
1978 34 
1979 38 -0.00733 0.00708 0.840179 -0.015024 0 1 
1980 36 -0.009556 0.00683 0.908833 -0.01364 0.000157 1 
1981 37 -0.007876 0.006567 0.867629 -0.011427 0.000532 0.993539 
1982 41 -0.00307 0.006799 0.673913 -0.007067 0.001384 0.700152 
1983 39 -0.005026 0.006596 0.769062 -0.006511 0.001436 0.745598 
1984 51 0.005905 0.009308 0.299205 0.001713 0.003581 0.160794 
1985 47 0.002537 0.009231 0.44658 0.001826 0.003458 0.21819 
1986 57 0.009587 0.010218 0.18133 0.007211 0.004561 0.054431 
1987 48 0.003108 0.011015 0.457287 0.003863 0.003862 0.16886 
1988 60 0.010695 0.012291 0.184336 0.008067 0.0041 0.024796 
1989 65 0.013007 0.012028 0.115301 0.011319 0.004746 0.011377 
1990 74 0.01677 0.012066 0.050444 0.015218 0.00566 0.003957 

 



   

1991 69 0.01406 0.011912 0.083924 0.014103 0.005278 0.006062 
1992 65 0.011824 0.011705 0.122378 0.012194 0.005196 0.013263 
1993 57 0.007614 0.011953 0.255309 0.008472 0.00587 0.078479 
1994 70 0.013266 0.012719 0.098905 0.011676 0.005265 0.009725 
1995 81 0.016952 0.012845 0.04191 0.015378 0.006059 0.002893 
1996 99 0.021917 0.0134 0.011682 0.020667 0.008302 0.001326 
1997 99 0.02134 0.013051 0.011382 0.021091 0.008222 0.001132 

  

 



   

 
 
R Code:  Density dependent state space model for population abundance data with unequal time 
intervals  
 
 
R program to calculate maximum likelihood and restricted maximum likelihood estimates for the 
Ornstein Uhlenbeck state space model, using population abundance data having possibly unequal 
observation time intervals. 
 

#  Ornstein Uhlenbeck State Space Model version date 122010.R: 
# 
#  Program for calculating maximum likelihood (ML) or restricted maximum 
#  likelihood (REML) estimates of unknown parameters for the Ornstein 
#  Uhlenbeck State Space (OUSS) model of stochastic population growth.   
#  The model is 
# 
#  dX(t) = theta*[mu - X(t)]*dt  +  dW(t) 
#               with dW(t) ~ normal(0,dt*betasq), 
#  Y(t) = X(t) + F(t) 
#               with F(t) ~ normal(0,tausq). 
# 
#  Here X(t) is log-population abundance, Y(t) is observed or estimated value 
#  of X(t), theta, mu, betasq, tausq are parameters.  The parameter betasq 
#  is the variance of the process noise, and tausq is the variance of the 
#  observation error. 
# 
#  The model takes population abundance N(t) = exp(X(t)) to be governed by a 
#  stochastic, continuous time density dependent model, with the observed 
#  abundances O(t) = N(t)*exp(F(t)) arising from lognormal sampling error. 
# 
#  User provides time series of observed population abundances o(0), o(1), 
#  ..., o(q), which are log-transformed by the program into y(0), y(1), ..., 
#  y(q), assumed to be a time series realization of Y(t).  Likelihood 
#  function of y(0), y(1), ..., y(q) is that of a multivariate normal 
#  distribution.  The observation times t_0, t_1, t_2, ..., t_q can have 
#  unequal intervals. 
# 
#  Program computes initial parameter values for iterations.  The program 
#  should be re-run for several sets of initial values, as the likelihood 
#  function for the model frequently has multiple local maxima. 
# 
#  This program written by Brian Dennis (Dept Fish and Wildlife Resources, 
#  Univ Idaho, Moscow, Idaho, 83844-1136 USA  brian@uidaho.edu). 
# 
#  Citations: 
#    Dennis, B. 2011.  Density dependent state space model for population  
#    abundance data with unequal time intervals.  Unpublished manuscript  
#    for:  Ecology. 
# 
#------------------------------------------------------------- 

 



   

#        USER INPUT SECTION 
#------------------------------------------------------------- 
#  User supplies time series data here.  User can substitute R statements to 
#    read population abundance data from a file into the vector "Observed.t". 
#    Times of observation are entered into the vector "Time.t". 
 
Observed.t=c(346,675,802,1478,1173,756,861,972,854,1161,1318,901,901,1173, 
   608,811,903,584,1179,1020,1129,966);  #  No zeros!  (With zeros, you must 
                                         #    use another model). 
Time.t=c(1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1970,1971,1972, 
   1973,1974,1975,1976,1977,1978,1979,1980,1981);  #  Initial time can  
                                                   #    be nonzero. 
 
#  Example data are bobcat (Lynx rufus) in Idaho, data set 212 from the Global 
#  Population Dynamics Database. 
#------------------------------------------------------------- 
#        PROGRAM INITIALIZATION SECTION 
#-------------------------------------------------------------  
library(MASS);  #  loads miscellaneous functions (ginv, etc.) 
T.t=Time.t-Time.t[1]; #  For calculations, time starts at zero. 
Y.t=log(Observed.t);  #  Log-transform the observations. 
q=length(Y.t)-1;      #  Number of time series transitions, q. 
qp1=q+1;              #  q+1 gets used a lot, too. 
S.t=T.t[2:qp1]-T.t[1:q];  #  Time intervals. 
 
#------------------------------------------------------------- 
#        SECTION FOR DEFINING ML & REML LOG-LIKELIHOODS 
#------------------------------------------------------------- 
 
#  ML objective function "negloglike.OU.ml" is negative of log-likelihood; 
#  the Nelder-Mead optimization routine in R, "optim", is a minimization 
#  routine.  The ML objective function uses a multivariate normal log- 
#  likelihood (Eq. 16 in Dennis 2010).  The three function arguments are: 
#  phi, vector of parameters (transformed to the real line),  
#  yt, vector of time series observations, 
#  tt, vector of observation times. 
 
negloglike.OU.ml=function(phi,yt,tt)   
{ 
   mu=phi[1]; 
   theta=exp(phi[2]);         #  Constrains theta > 0. 
   betasq=exp(phi[3]);      #  Constrains betasq > 0.  
   tausq=exp(phi[4]);       #  Constrains tausq > 0. 
   thing=betasq/(2*theta);    #  Recurring quantity. 
   ss=tt[2:qp1]-tt[1:q];      #  Time intervals. 
   q=length(yt)-1; 
   qp1=q+1; 
   vx=matrix(1,qp1,qp1);  # Preallocate matrix for autocorrelations. 
   #  Following loop calculates the model autocorrelations and puts  
   #    them in vx. 
   for (ti in 1:q) 
   { 
      vx[(ti+1):qp1,ti]=exp(-theta*cumsum(ss[ti:q])); 
      vx[ti,(ti+1):qp1]=vx[(ti+1):qp1,ti]; 
   } 

 



   

   Sigma.mat=vx*thing;   #  Variance-covariance matrix for X(t). 
   Itausq=matrix(0,qp1,qp1); 
   diag(Itausq)=rep(tausq,qp1); 
   V=Sigma.mat+Itausq;   #  Variance-covariance matrix for Y(t). 
   mm=rep(mu,qp1); 
   ofn=(qp1/2)*log(2*pi)+0.5*log(det(V))+ 
      0.5*(yt-mm)%*%ginv(V)%*%(yt-mm); 
   return(ofn); 
} 
 
#  REML objective function "negloglike.OU.reml" is negative of log-likelihood 
#  for first differences of the log-scale observations.  The REML objective 
#  function uses equations 17-19 of Dennis (2010).  The three 
#  function arguments are:  
#  phi, vector of parameters (transformed to the real line),  
#  yt, vector of time series observations (log scale), 
#  tt, vector of observation times. 
#  The function performs the differencing. 
negloglike.OU.reml=function(phi,yt,tt) 
{ 
   theta=exp(phi[1]);          #  Constrains th > 0. 
   betasq=exp(phi[2]);      #  Constrains betasq > 0.  
   tausq=exp(phi[3]);       #  Constrains tausq > 0. 
   thing=betasq/(2*theta);       #  Recurring quantity. 
   ss=tt[2:qp1]-tt[1:q];         #  Time intervals. 
   q=length(yt)-1; 
   qp1=q+1; 
   vx=matrix(1,qp1,qp1);  # Preallocate matrix for autocorrelations. 
   #  Following loop calculates the autocorrelations and puts  
   #    them in vx. 
   for (ti in 1:q) 
   { 
      vx[(ti+1):qp1,ti]=exp(-theta*cumsum(ss[ti:q])); 
      vx[ti,(ti+1):qp1]=vx[(ti+1):qp1,ti]; 
   } 
   Sigma.mat=vx*thing; 
   Itausq=matrix(0,qp1,qp1); 
   diag(Itausq)=rep(tausq,qp1); 
   V=Sigma.mat+Itausq; 
   Dmat=cbind(-diag(1,q),matrix(0,q,1))+ 
      cbind(matrix(0,q,1),diag(1,q));    #  Differencing matrix. 
   Phi.mat=Dmat%*%V%*%t(Dmat);           #  REML var-cov mattrix. 
   wt=yt[2:qp1]-yt[1:q]; 
   ofn=(q/2)*log(2*pi)+0.5*log(det(Phi.mat))+ 
      0.5*wt%*%ginv(Phi.mat)%*%wt; 
   return(ofn); 
} 
 
#------------------------------------------------------------- 
#        SECTION FOR CALCULATING INITIAL VALUES. 
#------------------------------------------------------------- 
Ybar=mean(Y.t); 
Yvar=sum((Y.t-Ybar)*(Y.t-Ybar))/q; 
 
mu1=Ybar; 

 



   

th1=-mean(log(abs((Y.t[2:qp1]-mu1)/ 
   (Y.t[1:q]-mu1)))/S.t);            # Kludge an initial value for theta 
                                     #  based on mean of Y(t+s) given Y(t). 
bsq1=2*th1*Yvar/(1+2*th1);         #  Moment estimate using stationary 
tsq1=bsq1;                         #   variance, with betasq=tausq. 
 
#---------------------------------------------------------------------- 
#        SECTION FOR CALCULATING ML & REML PARAMETER ESTIMATES 
#---------------------------------------------------------------------- 
 
# The ML estimates. 
OUSSml=optim(par=c(mu1,log(th1),log(bsq1),log(tsq1)), 
   negloglike.OU.ml,NULL,method="Nelder-Mead",yt=Y.t,tt=T.t); 
params.ml=c(OUSSml$par[1],exp(OUSSml$par[2]),exp(OUSSml$par[3]), 
   exp(OUSSml$par[4])); 
lnlike.ml=-OUSSml$value[1]; 
AIC.ouss=-2*lnlike.ml+2*length(params.ml); 
 
mu.ml=params.ml[1];           # These are the ML estimates. 
theta.ml=params.ml[2];        #          -- 
betasq.ml=params.ml[3];       #          -- 
tausq.ml=params.ml[4];        #          -- 
 
# The REML estimates. 
OUSSreml=optim(par=c(log(th1),log(bsq1),log(tsq1)), 
   negloglike.OU.reml,NULL,method="Nelder-Mead",yt=Y.t,tt=T.t); 
params.reml=c(exp(OUSSreml$par[1]),exp(OUSSreml$par[2]), 
   exp(OUSSreml$par[3])); 
theta.reml=params.reml[1];    #  These are the REML estimates. 
betasq.reml=params.reml[2];   #           -- 
tausq.reml=params.reml[3];    #           -- 
 
#  Calculate REML estimate of mu using Eq. 20 of Dennis (2010). 
thing=betasq.reml/(2*theta.reml); 
vx=matrix(1,qp1,qp1); 
for (ti in 1:q) 
{ 
   vx[(ti+1):qp1,ti]=exp(-theta.reml*cumsum(S.t[ti:q])); 
   vx[ti,(ti+1):qp1]=vx[(ti+1):qp1,ti]; 
} 
Sigma.mat=vx*thing; 
Itausq=matrix(0,qp1,qp1); 
diag(Itausq)=rep(tausq.reml,qp1); 
V.reml=Sigma.mat+Itausq; 
j=matrix(1,qp1,1); 
Vinv=ginv(V.reml); 
mu.reml=(t(j)%*%Vinv%*%Y.t)/(t(j)%*%Vinv%*%j);  #  REML estimate of mu. 
 
Var_mu.reml=1/(t(j)%*%Vinv%*%j);        #  Variance of mu 
mu_hi.reml=mu.reml+1.96*sqrt(Var_mu.reml); #  95% CI for mu 
mu_lo.reml=mu.reml-1.96*sqrt(Var_mu.reml); #       -- 
 
#  Calculate predicted population sizes for the OUSS model 
#  (X(tj) given all the observations except for Y(tj)) 
#  with multivariate normal distribution, for plotting. 

 



   

# 
#  Choose ML or REML estimates here (by commenting out the unwanted). 
#  mu=mu.ml;  theta=theta.ml;  betasq=betasq.ml;  tausq=tausq.ml; 
mu=mu.reml;  theta=theta.reml;  betasq=betasq.reml;  tausq=tausq.reml; 
 
thing=betasq/(2*theta); 
vx=matrix(1,qp1,qp1); 
for (ti in 1:q) 
{ 
   vx[(ti+1):qp1,ti]=exp(-theta*cumsum(S.t[ti:q])); 
   vx[ti,(ti+1):qp1]=vx[(ti+1):qp1,ti]; 
} 
Sigma.mat=vx*thing; 
Itausq=matrix(0,qp1,qp1); 
diag(Itausq)=rep(tausq,qp1); 
V=Sigma.mat+Itausq; 
 
Predict.t=rep(0,qp1); 
Muvec=rep(mu,q); 
for (tj in 1:qp1) 
{ 
Y.omitj=Y.t[-tj];    #  Omit observation at time tj. 
V.omitj=V[-tj,-tj];  #  Omit row tj and col tj from var-cov matrix. 
V12=V[tj,-tj];       #  Submatrix:  row tj without col tj. 
Predict.t[tj]=mu+V12%*%ginv(V.omitj)%*%(Y.omitj-Muvec);  #  Usual expression 
                                                         #  for conditional 
                                                         #  MV normal mean. 
} 
Predict.t=exp(Predict.t); 
 
#  Plot the data & model-fitted values 
plot(Time.t,Observed.t,xlab="time",ylab="population abundance", 
   type="o",pch=1,cex=1.5);      #  Population data are circles. 
par(lty="dashed");               #  Predicted abundances are dashed line. 
points(Time.t,Predict.t, type="l", lwd=1); 
 
#  Print the parameter estimates 
parms.reml=c(mu.reml,theta.reml, betasq.reml,tausq.reml); #  Collect for  
                                                          #    printing. 
parms.ml=c(mu.ml,theta.ml, betasq.ml,tausq.ml);           #      -- 
names=c("mu","theta","betasq","tausq");                   #      -- 
types=c("OUSS-ML","OUSS-REML");                           #      -- 
matrix(cbind(parms.ml,parms.reml), 
   nrow=2,ncol=4,byrow=TRUE,dimnames=list(types,names));       #  Print stuff 
 
matrix(cbind(mu_lo.reml,mu_hi.reml),nrow=1,ncol=2,byrow=TRUE, 
   dimnames=list("95% CI for MU",c("LO","HI")));               #  Print stuff 
 
matrix(cbind(lnlike.ml,AIC.ouss),nrow=1,ncol=2,byrow=TRUE, 
   dimnames=list("OUSS ML RESULTS",c("LN-LIKELIHOOD","AIC"))); #  Print stuff 
 
 
  

 



   

OUTPUT: 
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                 mu  theta  betasq  tausq 
OUSS-ML     6.794726    1.692528      0.3339971    0.0001871666 
OUSS-REML 6.792985    1.259853      0.2717515    0.0007480839 
 
                            LO           HI 
95% CI for MU 6.615151 6.97082 
 
                  LN-LIKELIHOOD      AIC 
OUSS ML RESULTS     -5.394046       18.78809 
 

  

 



   

R Code:  Fitting population growth models and projecting future Sonoran pronghorn viability. 
 
# Simulation Setup 
#-------------------------------------------------- 
library(MASS) 
NumReps = 4000 
 
NumTimeSteps = 20 
WildSexRatio = .5    #Female/(Females+Males) sex ratio 
InitAbund1 = 34    #Number of females in captive pen in 2009 
InitAbund2 = 68    #Number of individuals in wild population in 2008 
InitAbund2 = InitAbund2*WildSexRatio  #Number of females in wild population 
InitAbund3 = 0    #Intitial abund. of reestablished population 
InitAbund3 = InitAbund3*WildSexRatio 
 
lambdamax = 2  #1.86 highest observed in captive population; 3 highest biological = 2 fawns:doe, 

100% survival adults and fawns  
Pop1_K = 34 
Pop2_K = 282*WildSexRatio    #Highest observed abundance in current wild population 
Pop3_K = 282*WildSexRatio    #Highest observed abundance in current wild population 
 
WildsCorrelation = .5    #Correlation between Pop2 and Pop3 in residual variance of 

growth models  
 
NoParamEstError = F  
NoPrecipError = F   #for stochastic future precipitation 
NoResidualError = F   #for stochastic pop. growth 
 
PrecipIntercept = 12.3   #avg. biannual precip from Organ Pipe, Tacna3, Ajo (1993-

2008) 
PrecipBetaYear = 0   #linear trend in precipitation 
sdPrecip = 4.04   #residual error in precip. model 
#=========================================================== 
 
if (NoPrecipError==T)sdPrecip=0 
PrecipDeviate_t=matrix(rnorm(NumReps*NumTimeSteps,0,sdPrecip),NumReps,NumTimeSteps) 
 
Time_t = 0:NumTimeSteps 
NumAbund = NumTimeSteps+1 
NPop1 = matrix(0,NumReps,NumAbund) 
NPop2 = matrix(0,NumReps,NumAbund) 
NPop2with3 = matrix(0,NumReps,NumAbund) 
NPop3 = matrix(0,NumReps,NumAbund) 
 
Emigrants = matrix(0,NumReps,NumAbund) 
CurrentPrecip=matrix(0,NumReps,NumAbund) 
 
lambda1 = matrix(0,NumReps,NumTimeSteps) 
lambda2=matrix(0,NumReps,NumTimeSteps) 
lambda2with3=matrix(0,NumReps,NumTimeSteps) 
lambda3=matrix(0,NumReps,NumTimeSteps) 
 
BootBeta_0 = array(0,NumReps) 
BootBeta_lnN = array(0,NumReps) 
BootBeta_Precip = array(0,NumReps) 
BootSigma2 = array(0,NumReps) 
 
#=========================================================== 
# Estimate Population 1 Growth Parameters (Captive Population) 
#-------------------------------------------------- 
Nt_1 = c(6,11,17,24,34)   #Female abundance data from CPNWR captive pop. 
Ntplus1_1 = c(8,14,24,34,41) 
rt_1 = log(Ntplus1_1/Nt_1) 
 
mu1 = mean(rt_1)    #Exponential Growth Model 
sigma1 = sd(rt_1) 
SE_mu = sqrt(sigma1^2/length(rt_1)) 
 
#-------------------------------------------------- 
# Create random deviates 

 



   

#-------------------------------------------------- 
if (NoParamEstError==T)SE_mu=0 
mu_rep = matrix(rnorm(NumReps,mu1,SE_mu),NumReps,1) 
 
sigma_sq_devs = rchisq(n=NumReps,df = (length(rt_1)-1)) 
sigma_rep = matrix(sqrt(sigma_sq_devs*sigma1^2/(length(rt_1)-1)), NumReps,1) 
if (NoParamEstError==T)sigma_rep = matrix(sigma1, NumReps,1) 
 
E1_t = matrix(rnorm(NumReps*NumTimeSteps,0,1),NumReps,NumTimeSteps) #Standard normal deviates 
if (NoResidualError==T)E1_t = matrix(0,NumReps,NumTimeSteps) 
#=========================================================== 
# Estimate Population 2 and 3 Growth Parameters 
#-------------------------------------------------- 
Nt_2 = c(179,282,130,142,99,21,58,68)   #Abundance data from wild pop. 
Ntplus1_2 = c(282,130,142,99,21,58,68,68)   
Nt_2 = Nt_2*WildSexRatio 
Ntplus1_2 = Ntplus1_2*WildSexRatio 
 
rt_2 = log(Ntplus1_2/Nt_2) 
Precip = c(18.75,6.59,14.18,11.2,7.73,15.8,10.99,13.17) #biannual precip from Organ Pipe, 

Tacna3, Ajo (1993-2008) 
 
PrecipFit = lm (rt_2~log(Precip)) 
Beta_0 = coef(PrecipFit)[[1]] 
Beta_lnN = 0 
Beta_Precip = coef(PrecipFit)[[2]] 
Q = length(rt_2)-df.residual(PrecipFit)+1 
sigma2 = sqrt(anova(PrecipFit)[(Q-1),2]/length(rt_2)) 
bootsigma2 = sigma2 
 
#-------------------------------------------------- 
# Create random deviates 
#-------------------------------------------------- 
if (NoResidualError==T)sigma2=0 
Covariance = matrix(c(1,WildsCorrelation,WildsCorrelation,1),2,2) 
Devs2and3 = mvrnorm(n=NumReps*NumTimeSteps,mu = rep(0,2),Sigma=Covariance) 
E2_t = matrix(Devs2and3[,1],NumReps,NumTimeSteps)   #Standard normal deviates 
E3_t = matrix(Devs2and3[,2],NumReps,NumTimeSteps)   #Standard normal deviates 
 
#=========================================================== 
# Population Projection 
#-------------------------------------------------- 
 
Pop2NumTimeSteps = NumTimeSteps/2 
for (repj in 1:NumReps){ 
  NPop1[repj,1]=InitAbund1 
  NPop2[repj,1]=InitAbund2 
  NPop2with3[repj,1]=InitAbund2 
  NPop3[repj,1]=InitAbund3 
   
  #Get parameter estimates for for projections  
  mu_j = mu_rep[repj,1] 
  sig_j = sigma_rep[repj,1] 
   
  #Parametric bootstrap time series to refit growth model for wildl pops. growth parameters 
   if (NoParamEstError==F){ 
    NormDev = rnorm(length(Nt_2)) 
    BootTimeSeries = array(0,length(Nt_2)+1) 
    BootTimeSeries[1]=Nt_2[1] 
    for (ti in 1:length(Nt_2)){ 
  lambda = 

exp(Beta_0+Beta_lnN*log(BootTimeSeries[ti])+Beta_Precip*log(Precip[ti])+NormDev[ti]*boots
igma2) 

  BootTimeSeries[ti+1]=BootTimeSeries[ti]*lambda 
    } 
    BootNt_2=BootTimeSeries[1:length(BootTimeSeries)-1] 
    BootRt_2=log(BootTimeSeries[2:length(BootTimeSeries)])-log(BootNt_2) 
    BootPrecipFit = lm (BootRt_2~log(Precip)) 
    BootBeta_0[repj] = coef(BootPrecipFit)[[1]] 
    BootBeta_lnN[repj] = 0 
    BootBeta_Precip[repj] = coef(BootPrecipFit)[[2]] 

 



   

    BootQ = length(rt_2)-df.residual(BootPrecipFit)+1 
    BootSigma2[repj] = sqrt(anova(BootPrecipFit)[(Q-1),2]/length(rt_2)) 
   } 
 
#-------------------------------------------------- 
#Project Wild and Captive Pops. with no Immigrants/Emigrants >> Pop1 and Pop2 get truncated to K 
#-------------------------------------------------- 
 for (t in 2:NumAbund){ 
   lambda1[repj,t-1] = exp(mu_j+sig_j*E1_t[repj,t-1]) 
   if(lambda1[repj,t-1]>lambdamax)lambda1[repj,t-1]=lambdamax 
   NPop1[repj,t] = NPop1[repj,t-1]*lambda1[repj,t-1] 
   if(NPop1[repj,t]>Pop1_K){ 
  Emigrants[repj,t]=NPop1[repj,t]-Pop1_K 
  NPop1[repj,t]=Pop1_K 
   } # end if Pop1 > K 
 
   #Grow 2nd population only in odd years 
   if (t %% 2==1){ 
   CurrentPrecip[repj,t] = PrecipIntercept + 

PrecipBetaYear*(t+2007)+PrecipDeviate_t[repj,t-2] 
   if (CurrentPrecip[repj,t]<0)CurrentPrecip[repj,t]=0.01 
   if (NoParamEstError==T){     
  BootBeta_0[repj]=Beta_0 
  BootBeta_lnN[repj]=Beta_lnN 
  BootBeta_Precip[repj]=Beta_Precip 
  BootSigma2[repj]=sigma2 
   } 
 
   lambda2[repj,t-2] = exp(BootBeta_0[repj]+BootBeta_lnN[repj]*log(NPop2[repj,t-2]) 

+BootBeta_Precip[repj]*log(CurrentPrecip[repj,t]) 
  +E2_t[repj,t-2]*BootSigma2[repj]) 
   if(lambda2[repj,t-2]>(lambdamax^2))lambda2[repj,t-2]=(lambdamax^2)  #wild pop grows 

every 2 years 
     NPop2[repj,t] = NPop2[repj,t-2]*lambda2[repj,t-2] 
#-------------------      
  if (NPop2[repj,t]>Pop2_K)NPop2[repj,t]=Pop2_K  
#------------------- 
     NPop2[repj,t-1]=mean(c(NPop2[repj,t],NPop2[repj,t-2])) 
   } #end if odd years 
 
 } #end time loop 
} #end replication loop 
 
CaptiveNoMove = NPop1 
Wild2NoMove = NPop2 
 
#-------------------------------------------------- 
#Project Wild Pops. with Immigrants/Emigrants 
#-------------------------------------------------- 
 
for (repj in 1:NumReps){ 
  NPop2[repj,1]=InitAbund2 
  NPop2with3[repj,1]=InitAbund2 
  NPop3[repj,1]=InitAbund3 
 
for (t in 2:NumAbund){ 
#Grow 2nd and 3rd populations only in odd years 
if (t %% 2==1){ 
 NtPlusE_2 = NPop2[repj,t-2] 
 NtPlusE_2with3 = NPop2with3[repj,t-2] 
 NtPlusE_3 = NPop3[repj,t-2] 
 
 #------------------------------------ 
 #MetaPop Dynamics move individuals among populations 
 #------------------------------------  
 NtPlusE_2 = NPop2[repj,t-2]+Emigrants[repj,t-1]+Emigrants[repj,t]   
 if (NPop2with3[repj,t-2]<140*WildSexRatio){ #If Pop2 is <140, then send emigrants to 

Pop2, otherwise send to Pop3 
  NtPlusE_2with3 = NPop2with3[repj,t-2] + Emigrants[repj,t-1]+Emigrants[repj,t] 
 } 
 if (NPop2with3[repj,t-2]>140*WildSexRatio){ 

 



   

  NtPlusE_3 = NPop3[repj,t-2] + Emigrants[repj,t-1]+Emigrants[repj,t] 
 }   
 
 #------------------------------------ 
 #Grow populations 
 #------------------------------------   
 
   if (NoParamEstError==T){     
  BootBeta_0[repj]=Beta_0 
  BootBeta_lnN[repj]=Beta_lnN 
  BootBeta_Precip[repj]=Beta_Precip 
  BootSigma2[repj]=sigma2 
   } 
 
 lambda2[repj,t-2] = 

exp(BootBeta_0[repj]+BootBeta_lnN[repj]*log(NtPlusE_2)+BootBeta_Precip[repj]*log(CurrentP
recip[repj,t]) 

  +E2_t[repj,t-2]*BootSigma2[repj]) 
 if(lambda2[repj,t-2]>(lambdamax^2))lambda2[repj,t-2]=(lambdamax^2) 
 NPop2[repj,t] = NtPlusE_2*lambda2[repj,t-2] 
#------------------- 
 if(NPop2[repj,t]>Pop2_K)NPop2[repj,t]=Pop2_K 
#------------------- 
 NPop2[repj,t-1]=mean(c(NPop2[repj,t],NPop2[repj,t-2])) 
  
 lambda2with3[repj,t-2] = 

exp(BootBeta_0[repj]+BootBeta_lnN[repj]*log(NtPlusE_2with3)+BootBeta_Precip[repj]*log(Cur
rentPrecip[repj,t]) 

  +E2_t[repj,t-2]*BootSigma2[repj]) 
 if(lambda2with3[repj,t-2]>(lambdamax^2))lambda2with3[repj,t-2]=(lambdamax^2) 
 NPop2with3[repj,t] = NtPlusE_2with3*lambda2with3[repj,t-2] 
#------------------- 
 if(NPop2with3[repj,t]>Pop2_K)NPop2with3[repj,t]=Pop2_K 
#------------------- 
 NPop2with3[repj,t-1]=mean(c(NPop2with3[repj,t],NPop2with3[repj,t-2])) 
 
 if (NtPlusE_3>0){ 
  lambda3[repj,t-2] = 

exp(BootBeta_0[repj]+BootBeta_lnN[repj]*log(NtPlusE_3)+BootBeta_Precip[repj]*log(CurrentP
recip[repj,t]) 

  +E3_t[repj,t-2]*BootSigma2[repj]) 
 } 
 if (NtPlusE_3==0)lambda3[repj,t-2]=0 
 if(lambda3[repj,t-2]>(lambdamax^2))lambda3[repj,t-2]=(lambdamax^2) 
 NPop3[repj,t] = NtPlusE_3*lambda3[repj,t-2] 
#------------------- 
 if(NPop3[repj,t]>Pop3_K)NPop3[repj,t]=Pop3_K 
#------------------- 
 NPop3[repj,t-1]=mean(c(NPop3[repj,t],NPop3[repj,t-2])) 
   
} #end if odd years 
 
} #end time loop 
} #end replication loop 
 
Wild2MoveNo3 = NPop2 
Wild2MoveWith3 = NPop2with3 
Wild3Move = NPop3 
WildTotalMove = Wild2MoveWith3+Wild3Move 
 
#-------------------------------------------------- 
# Output 
#-------------------------------------------------- 
 
# Deterministic 
#-------------------------------------------------- 
if (NoParamEstError==T){ 
if (NoPrecipError==T){ 
if (NoResidualError==T){ 
 
 

 



   

 

xrange <- range(Time_t) 
yrange <- c(0,max(Wild2NoMove,Wild2MoveNo3,WildTotalMove)) 
plot(xrange, yrange, type = 'n', xlab = 'Years Into Future', ylab = 'Female Abundance', yaxs="i", 

xaxs="i", bty="l") 
 for (j in 1:NumReps) { 
   lines(Time_t,Wild2NoMove[j,], col = "black", lwd = 1, lty=2,yaxs="i", xaxs="i") 
   lines(Time_t,Wild2MoveNo3[j,],col="black", lwd = 2, lty=1,yaxs="i", xaxs="i") 
 lines(Time_t,WildTotalMove[j,],col="black", lwd = 3, lty=3,yaxs="i", xaxs="i") 
# lines(Time_t,Wild3Move[j,],col="black", lwd = 3, lty=3, yaxs="i", xaxs="i") 
 } 
} 
} 
}  
 
# Stochastic 
#-------------------------------------------------- 
y1 = Wild2NoMove[,NumAbund] 
y2 = Wild2MoveNo3[,NumAbund] 
y3 = Wild2MoveWith3[,NumAbund] 
y4 = Wild3Move[,NumAbund] 
y5 = WildTotalMove[,NumAbund] 
  
xrange=c(0,400) #range(c(WildOnly, x2) 
yrange=c(0,0.04) 
plot(density(y1), col = "black",xlim=xrange, ylim=yrange,yaxp = c(0,0.035,1), 
 main="", ylab = "Probability density", xlab="Final Abundance", lty=2, lwd = 1,xaxs="i", 

yaxs="i", bty="l") 
lines (c(26.57, 26.57), c(0,1), lty = 2, lwd =1, xaxs="i", yaxs="i") 
 
lines(density(y2), col="black", lwd = 2,lty=1,xaxs="i", yaxs="i") 
lines (c(141,141),c(0,1),lwd=2,lty=1,xaxs="i", yaxs="i") 
 
lines(density(y5), col="black", lwd = 3,lty=3,xaxs="i", yaxs="i") 
lines (c(220,220),c(0,1),lwd=3,lty=3,xaxs="i", yaxs="i") 
 
 
wildonlyvar = var(y1)  #Wild Only Variance 
wildmetapopvar =var(y5)  #Wild Metapop Variance 
 
less50WildOnly = y1<50 
ProbLess50WildOnly = sum(less50WildOnly)/NumReps 
more100WildOnly = y1>100 
ProbMore100WildOnly = sum(more100WildOnly)/NumReps 
 
less50Wild2No3 = y2<50 
ProbLess50Wild2No3 = sum(less50Wild2No3)/NumReps 
more100Wild2No3 = y2>100 
ProbMore100Wild2No3 = sum(more100Wild2No3)/NumReps 
 
less50Wild2and3 = y5<50 
ProbLess50Wild2and3 = sum(less50Wild2and3)/NumReps 
more100Wild2and3 = y5>100 
ProbMore100Wild2and3 = sum(more100Wild2and3)/NumReps 
 
ProbLess50WildOnly 
ProbLess50Wild2No3 
ProbLess50Wild2and3 
ProbMore100WildOnly 
ProbMore100Wild2No3 
ProbMore100Wild2and3 
wildonlyvar 
wildmetapopvar 
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